Publications by authors named "Aaron LaForge"

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Roaming is an unconventional type of molecular reaction where fragments, instead of immediately dissociating, remain weakly bound due to long-range Coulombic interactions. Due to its prevalence and ability to form new molecular compounds, roaming is fundamental to photochemical reactions in small molecules. However, the neutral character of the roaming fragment and its indeterminate trajectory make it difficult to identify experimentally.

View Article and Find Full Text PDF

Ultrafast H and H formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H roaming that leads to H and H formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H to H increases with time delay, while it is flat at a photon energy of 70 eV.

View Article and Find Full Text PDF

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide.

View Article and Find Full Text PDF

Upon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump-probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers.

View Article and Find Full Text PDF

Here, we report on the nonlinear ionization of argon atoms in the short wavelength regime using ultraintense x rays from the European XFEL. After sequential multiphoton ionization, high charge states are obtained. For photon energies that are insufficient to directly ionize a 1s electron, a different mechanism is required to obtain ionization to Ar^{17+}.

View Article and Find Full Text PDF

Isomerization induced by laser ionization in acetonitrile (CHCN) was investigated using pump-probe spectroscopy in combination with ion-ion coincident Coulomb explosion imaging. We deduced five primary channels indicating direct C-C breakup, single and double hydrogen migration, and H and H dissociation in the acetonitrile cation. Surprisingly, the hydrogen-migration channels dominate over direct fragmentation.

View Article and Find Full Text PDF

High intensity XUV radiation from a free-electron laser (FEL) was used to create a nanoplasma inside ammonia clusters with the intent of studying the resulting electron-ion interactions and their interplay with plasma evolution. In a plasma-like state, electrons with kinetic energy lower than the local collective Coulomb potential of the positive ionic core are trapped in the cluster and take part in secondary processes (e.g.

View Article and Find Full Text PDF

Intermolecular processes offer unique decay mechanisms for complex systems to internally relax. Here, we report the observation of an intermolecular Coulombic decay channel in an endohedral fullerene, a holmium nitride complex (Ho_{3}N) embedded within a C_{80} fullerene, between neighboring holmium ions, and between the holmium complex and the carbon cage. By measuring the ions and the electrons in coincidence after XUV photoabsorption, we can isolate the different decay channels, which are found to be more prevalent relative to intra-atomic Auger decay.

View Article and Find Full Text PDF

The dominant pathway of radiation damage begins with the ionization of water. Thus far, however, the underlying primary processes could not be conclusively elucidated. Here, we directly study the earliest steps of extreme ultraviolet (XUV)-induced water radiolysis through one-photon excitation of large water clusters using time-resolved photoelectron imaging.

View Article and Find Full Text PDF

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime.

View Article and Find Full Text PDF

Intense short-wavelength pulses from free-electron lasers and high-harmonic-generation sources enable diffractive imaging of individual nanosized objects with a single x-ray laser shot. The enormous data sets with up to several million diffraction patterns present a severe problem for data analysis because of the high dimensionality of imaging data. Feature recognition and selection is a crucial step to reduce the dimensionality.

View Article and Find Full Text PDF

A significant fraction of superfluid helium nanodroplets produced in a free-jet expansion has been observed to gain high angular momentum resulting in large centrifugal deformation. We measured single-shot diffraction patterns of individual rotating helium nanodroplets up to large scattering angles using intense extreme ultraviolet light pulses from the FERMI free-electron laser. Distinct asymmetric features in the wide-angle diffraction patterns enable the unique and systematic identification of the three-dimensional droplet shapes.

View Article and Find Full Text PDF

The energy conversion in solar cells has conventionally been limited by the Shockley-Queisser limit. Singlet fission (SF), a decay mechanism where a single excited singlet state is converted into two triplet states, can drastically improve this efficiency. For the most part, observation of SF has been limited to crystalline structures in solids and films, where strong ordering was present.

View Article and Find Full Text PDF