Publications by authors named "Aaron Kershner"

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression.

View Article and Find Full Text PDF

GLP-1/Notch signaling and a downstream RNA regulatory network maintain germline stem cells in Caenorhabditis elegans. In mutants lacking the GLP-1 receptor, all germline stem cells enter the meiotic cell cycle precociously and differentiate into sperm. This dramatic germline stem cell defect is called the "Glp" phenotype.

View Article and Find Full Text PDF

PUF RNA-binding proteins have diverse roles in animal development, with a broadly conserved role in stem cells. Two paradigmatic PUF proteins, FBF-1 and FBF-2, promote both self-renewal and differentiation in the germline. The LST-1 protein is a pivotal regulator of self-renewal and is oncogenic when mis-expressed.

View Article and Find Full Text PDF

Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state.

View Article and Find Full Text PDF

Stromal restraint of cancer growth and progression-emerging as a widespread phenomenon in epithelial cancers such as bladder, pancreas, colon, and prostate-appears rooted in stromal cell niche activity. During normal tissue repair, stromal niche signals, often Hedgehog-induced, promote epithelial stem cell differentiation as well as self-renewal, thus specifying a regenerating epithelial pattern. In the case of cancerous tissue, stromal cell-derived differentiation signals in particular may provide a brake on malignant growth.

View Article and Find Full Text PDF

Cellular RNA-protein (RNP) granules are ubiquitous and have fundamental roles in biology and RNA metabolism, but the molecular basis of their structure, assembly, and function is poorly understood. Using nematode "P-granules" as a paradigm, we focus on the PGL granule scaffold protein to gain molecular insights into RNP granule structure and assembly. We first identify a PGL dimerization domain (DD) and determine its crystal structure.

View Article and Find Full Text PDF

A stem cell's immediate microenvironment creates an essential "niche" to maintain stem cell self-renewal. Many niches and their intercellular signaling pathways are known, but for the most part, the key downstream targets of niche signaling remain elusive. Here, we report the discovery of two GLP-1/Notch target genes, lst-1 (lateral signaling target) and sygl-1 (synthetic Glp), that function redundantly to maintain germ-line stem cells (GSCs) in the nematode Caenorhabditis elegans.

View Article and Find Full Text PDF

C. elegans germline stem cells exist within a stem cell pool that is maintained by a single-celled mesenchymal niche and Notch signaling. Downstream of Notch signaling, a regulatory network governs stem cells and differentiation.

View Article and Find Full Text PDF

Epigenetic information is frequently erased near the start of each new generation. In some cases, however, epigenetic information can be transmitted from parent to progeny (multigenerational epigenetic inheritance). A particularly notable example of this type of epigenetic inheritance is double-stranded RNA-mediated gene silencing in Caenorhabditis elegans.

View Article and Find Full Text PDF

mRNA control networks depend on recognition of specific RNA sequences. Pumilio-fem-3 mRNA binding factor (PUF) RNA-binding proteins achieve that specificity through variations on a conserved scaffold. Saccharomyces cerevisiae Puf3p achieves specificity through an additional binding pocket for a cytosine base upstream of the core RNA recognition site.

View Article and Find Full Text PDF

Here we address the impact nuclear architecture has on molecular flow within the mitotic nucleus of live cells as compared to interphase by the pair correlation function method. The mitotic chromatin is found to allow delayed but continuous molecular flow of EGFP in and out of a high chromatin density region, which, by pair correlation function analysis, is shown as a characteristic arc shape that appears upon entry and exit. This is in contrast to interphase chromatin, which regulates flow between different density chromatin regions by means of a mechanism which turns on and off intermittently, generating discrete bursts of EGFP.

View Article and Find Full Text PDF

Stem cells are essential for tissue generation during the development of multicellular creatures, and for tissue homeostasis in adults. The great therapeutic promise of stem cells makes understanding their regulation a high priority. PUF RNA-binding proteins have a conserved role in promoting self-renewal of germline stem cells.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C.

View Article and Find Full Text PDF

Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly.

View Article and Find Full Text PDF

The intestinal cells of Caenorhabditis elegans embryos contain prominent, birefringent gut granules that we show are lysosome-related organelles. Gut granules are labeled by lysosomal markers, and their formation is disrupted in embryos depleted of AP-3 subunits, VPS-16, and VPS-41. We define a class of gut granule loss (glo) mutants that are defective in gut granule biogenesis.

View Article and Find Full Text PDF