Lithium metal batteries (LMBs) have emerged in recent years as highly promising candidates for high-density energy storage systems. Despite their immense potential, mutual constraints arise when optimizing energy density, rate capability, and operational safety, which greatly hinder the commercialization of LMBs. The utilization of oriented structures in LMBs appears as a promising strategy to address three key performance barriers: 1) low efficiency of active material utilization at high surface loading, 2) easy formation of Li dendrites and damage to interfaces under high-rate cycling, and 3) low ionic conductivity of solid-state electrolytes in high safety LMBs.
View Article and Find Full Text PDFLithium and sodium (Na) mixed polyanion solid electrolytes for all-solid-state batteries display some of the highest ionic conductivities reported to date. However, the effect of polyanion mixing on the ion-transport properties is still not fully understood. Here, we focus on NaZrSiPO (0 ≤ x ≤ 3) NASICON electrolyte to elucidate the role of polyanion mixing on the Na-ion transport properties.
View Article and Find Full Text PDF