Background: Two prominent biological features of the advanced stages of human melanoma are their high degree of vascularity and high-level expression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1). Given these characteristics, human melanoma serves as an ideal model to address an important question regarding the efficacy of angiogenesis-based cancer therapy. To induce tumor growth arrest and regression, does it suffice to block expression of bFGF and/or FGFR-1 in only the melanoma cells, or is it essential to inhibit expression of bFGF and/or FGFR-1 in both the melanoma cells and the melanoma cell-interspersing vasculature?
Materials And Methods: Primary and metastatic human melanomas, grown as subcutaneous tumors in nude mice, were injected twice a week with vector constructs containing the human tyrosinase promoter and antisense- oriented human bFGF or FGFR-1 cDNA.