Publications by authors named "Aaron J Schain"

OnabotulinumtoxinA (BoNT-A) is an Food and Drug Administration-approved, peripherally acting preventive migraine drug capable of inhibiting meningeal nociceptors. Expanding our view of how else this neurotoxin attenuates the activation of the meningeal nociceptors, we reasoned that if the stimulus that triggers the activation of the nociceptor is lessened, the magnitude and/or duration of the nociceptors' activation could diminish as well. In the current study, we further examine this possibility using electrocorticogram recording techniques, immunohistochemistry, and 2-photon microscopy.

View Article and Find Full Text PDF

Background: OnabotulinumtoxinA and agents that block calcitonin gene‒receptor peptide action have both been found to have anti-migraine effects, but they inhibit different populations of meningeal nociceptors. We therefore tested the effects of combined treatment with onabotulinumtoxinA and the calcitonin gene‒receptor peptide antagonist atogepant on activation/sensitization of trigeminovascular neurons by cortical spreading depression.

Material And Methods: Single-unit recordings were obtained of high-threshold and wide-dynamic-range neurons in the spinal trigeminal nucleus, and cortical spreading depression was then induced in anesthetized rats that had received scalp injections of onabotulinumtoxinA 7 days earlier and intravenous atogepant infusion 1 h earlier.

View Article and Find Full Text PDF

An epileptic seizure can trigger a headache during (ictal) or after (postictal) the termination of the event. Little is known about the pathophysiology of seizure-induced headaches. In the current study, we determined whether a seizure can activate nociceptive pathways that carry pain signals from the meninges to the spinal cord, and if so, to what extent and through which classes of peripheral and central neurons.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs, commonly known as COX-1/COX-2 inhibitors, can be effective in treating mild to moderate migraine headache. However, neither the mechanism by which these drugs act in migraine is known, nor is the specific contribution of COX-1 vs COX-2. We sought to investigate these unknowns using celecoxib, which selectively inhibits the enzymatic activity of COX-2, by determining its effects on several migraine-associated vascular and inflammatory events.

View Article and Find Full Text PDF

Most centrally acting migraine preventive drugs suppress frequency and velocity of cortical spreading depression (CSD). The purpose of the current study was to determine how the new class of peripherally acting migraine preventive drug (ie, the anti-CGRP-mAbs) affect CSD-an established animal model of migraine aura, which affects about 1/3 of people with migraine-when allowed to cross the blood-brain barrier (BBB). Using standard electrocorticogram recording techniques and rats in which the BBB was intentionally compromised, we found that when the BBB was opened, the anti-CGRP-mAb fremanezumab did not prevent the induction, occurrence, or propagation of a single wave of CSD induced by a pinprick, but that both fremanezumab and its isotype were capable of slowing down the propagation velocity of CSD and shortening the period of profound depression of spontaneous cortical activity that followed the spreading depolarization.

View Article and Find Full Text PDF

Background: The presence of calcitonin gene-related peptide and its receptors in multiple brain areas and peripheral tissues previously implicated in migraine initiation and its many associated symptoms raises the possibility that humanized monoclonal anti-calcitonin gene-related peptide antibodies (CGRP-mAbs) can prevent migraine by modulating neuronal behavior inside and outside the brain. Critical to our ability to conduct a fair discussion over the mechanisms of action of CGRP-mAbs in migraine prevention is data generation that determines which of the many possible peripheral and central sites are accessible to these antibodies - a question raised frequently due to their large size.

Material And Methods: Rats with uncompromised and compromised blood-brain barrier (BBB) were injected with Alexa Fluor 594-conjugated fremanezumab (Frema594), sacrificed 4 h or 7 d later, and relevant tissues were examined for the presence of Frema594.

View Article and Find Full Text PDF

Background: Botulinum neurotoxin type A, an FDA-approved prophylactic drug for chronic migraine, is thought to achieve its therapeutic effect through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with myelinated nociceptors and potentially the vasculature and immune cells. Prior investigations to determine botulinum neurotoxin type A effects on meningeal nociceptors were carried out in male rats and tested with stimuli that act outside the blood brain barrier. Here, we sought to explore the effects of extracranial injections of botulinum neurotoxin type A on activation of meningeal nociceptors by cortical spreading depression, an event which occurs inside the blood brain barrier, in female rats.

View Article and Find Full Text PDF

Cortical spreading depression (CSD) is a wave of neuronal depolarization thought to underlie migraine aura. Calcitonin gene-related peptide (CGRP) is a potent vasodilator involved in migraine pathophysiology. Evidence for functional connectivity between CSD and CGRP has triggered scientific interest in the possibility that CGRP antagonism may disrupt vascular responses to CSD and the ensuing plasma protein extravasation (PPE).

View Article and Find Full Text PDF

Objective: Cortical spreading depression (CSD) has long been implicated in migraine attacks with aura. The process by which CSD, a cortical event that occurs within the blood-brain barrier (BBB), results in nociceptor activation outside the BBB is likely mediated by multiple molecules and cells. The objective of this study was to determine whether CSD activates immune cells inside the BBB (pia), outside the BBB (dura), or in both, and if so, when.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP), the most abundant neuropeptide in primary afferent sensory neurons, is strongly implicated in the pathophysiology of migraine headache, but its role in migraine is still equivocal. As a new approach to migraine treatment, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs) were developed to reduce the availability of CGRP, and were found effective in reducing the frequency of chronic and episodic migraine. We recently tested the effect of fremanezumab (TEV-48125), a CGRP-mAb, on the activity of second-order trigeminovascular dorsal horn neurons that receive peripheral input from the cranial dura, and found a selective inhibition of high-threshold but not wide-dynamic range class of neurons.

View Article and Find Full Text PDF

A large body of evidence supports an important role for calcitonin gene-related peptide (CGRP) in migraine pathophysiology. This evidence gave rise to a global effort to develop a new generation of therapeutics that inhibit the interaction of CGRP with its receptor in migraineurs. Recently, a new class of such drugs, humanized anti-CGRP monoclonal antibodies (CGRP-mAbs), were found to be effective in reducing the frequency of migraine.

View Article and Find Full Text PDF

Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min.

View Article and Find Full Text PDF

Objective: Chronic migraine (CM) is often associated with chronic tenderness of pericranial muscles. A distinct increase in muscle tenderness prior to onset of occipital headache that eventually progresses into a full-blown migraine attack is common. This experience raises the possibility that some CM attacks originate outside the cranium.

View Article and Find Full Text PDF

We report a newly developed technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser-scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths. Striking color patterns unique to individual myelinated fibers are generated that facilitate their tracing in dense axonal areas.

View Article and Find Full Text PDF