Publications by authors named "Aaron J Maurais"

Citrullination is an enzyme-catalyzed post-translational modification (PTM) that is essential for a host of biological processes, including gene regulation, programmed cell death, and organ development. While this PTM is required for normal cellular functions, aberrant citrullination is a hallmark of autoimmune disorders as well as cancer. Although aberrant citrullination is linked to human pathology, the exact role of citrullination in disease remains poorly characterized, in part because of the challenges associated with identifying the specific arginine residues that are citrullinated.

View Article and Find Full Text PDF

The small molecule gibberellin JRA-003 was identified as an inhibitor of the NF-kB (nuclear kappa-light-chain-enhancer of activated B cells) pathway. Here we find that JRA-003 binds to and significantly inhibits the nuclear translocation of pathway-activating kinases IKKα (IκB kinase alpha) and IKKβ (IκB kinase beta). Analogs of JRA-003 were synthesized and NF-κB-inhibiting gibberellins were found to be cytotoxic in cancer-derived cell lines (HS 578T, HCC 1599, RC-K8, Sud-HL4, CA 46, and NCIH 4466).

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family.

View Article and Find Full Text PDF

Protein arginine deiminases (PADs) are calcium-dependent enzymes that mediate the post-translational conversion of arginine into citrulline. Dysregulated PAD activity is associated with numerous autoimmune disorders and cancers. In breast cancer, PAD2 citrullinates histone H3R26 and activates the transcription of estrogen receptor target genes.

View Article and Find Full Text PDF

The recognition that only a small percentage of known human gene products are druggable using traditional modes of non-covalent ligand design, has led to a resurgence in targeted covalent inhibitors. Covalent inhibitors offer advantages over non-covalent inhibitors in engaging otherwise challenging targets. Reactive cysteine residues on proteins are a common target for covalent inhibitors, whereby the high nucleophilicity of the cysteine thiol under physiological conditions provides an ideal anchoring site for electrophilic small molecules.

View Article and Find Full Text PDF

Increased protein citrullination is linked to various diseases including rheumatoid arthritis (RA), lupus, and cancer. Citrullinated autoantigens, a hallmark of RA, are recognized by anti-citrullinated protein antibodies (ACPAs) which are used to diagnose RA. ACPA-recognizing citrullinated enolase, vimentin, keratin, and filaggrin are also pathogenic.

View Article and Find Full Text PDF

Citrullination is the post-translational hydrolysis of peptidyl-arginines to form peptidyl-citrulline, a reaction that is catalyzed by the protein arginine deiminases (PADs), a family of calcium-regulated enzymes. Aberrantly increased protein citrullination is associated with a slew of autoimmune diseases (e.g.

View Article and Find Full Text PDF