Background: Plant long non-coding RNAs (lncRNAs) have important regulatory roles in responses to various biotic and abiotic stresses, including light quality. However, no lncRNAs have been specifically linked to the Shade Avoidance Response (SAS).
Results: To better understand the involvement of lncRNAs in shade avoidance, we examined RNA-seq libraries for lncRNAs with the potential to function in the neighbor proximity phenomenon in Arabidopsis thaliana (A.
Water stress may greatly limit plant functionality and growth. Stomatal closure and consequently reduced transpiration are considered as early and sensitive plant responses to drought and salinity stress. An important consequence of stomatal closure under water stress is the rise of leaf temperature (T ), yet T is not only fluctuating with stomatal closure.
View Article and Find Full Text PDFUnlabelled: Plants perceive and transduce information about light quantity, quality, direction and photoperiod via several photoreceptors and use it to adjust their growth and development. A role for photoreceptors has been hypothesized in the injuries that tomato plants develop when exposed to continuous light as the light spectral distribution influences the injury severity. Up to now, however, only indirect clues suggested that phytochromes (PHY), red/far-red photoreceptors, are involved in the continuous-light-induced injuries in tomato.
View Article and Find Full Text PDFLight is most important to plants as it fuels photosynthesis and provides clues about the environment. If provided in unnatural long photoperiods, however, it can be harmful and even lethal. Tomato (Solanum lycopersicum), for example, develops mottled chlorosis and necrosis when exposed to continuous light.
View Article and Find Full Text PDFUnlike other species, when tomato plants (Solanum lycopersicum L.) are deprived of at least 8h of darkness per day, they develop a potentially lethal injury. In an effort to understand why continuous light (CL) is injurious to tomato, we tested five factors, which potentially could be responsible for triggering the injury in CL-grown tomato: (i) differences in the light spectral distribution between sunlight and artificial light, (ii) continuous light signalling, (iii) continuous supply of light for photosynthesis, (iv) continuous photo-oxidative pressure and (v) circadian asynchrony - a mismatch between the internal circadian clock frequency and the external light/dark cycles.
View Article and Find Full Text PDFContinuous light induces a potentially lethal injury in domesticated tomato (Solanum lycopersicum) plants. Recently, continuous-light tolerance was reported in several wild tomato species, yet the molecular mechanisms underpinning tolerance/sensitivity are still elusive. Here, we investigated from which part of the plant continuous-light tolerance originates and whether this trait acts systemically within the plant.
View Article and Find Full Text PDFAn important constraint for plant biomass production is the natural day length. Artificial light allows for longer photoperiods, but tomato plants develop a detrimental leaf injury when grown under continuous light--a still poorly understood phenomenon discovered in the 1920s. Here, we report a dominant locus on chromosome 7 of wild tomato species that confers continuous light tolerance.
View Article and Find Full Text PDFContinuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges.
View Article and Find Full Text PDF