Non-invasive medical imaging techniques such as positron emission tomography (PET) imaging are powerful platforms to track the fate of radiolabeled materials for diagnostic or drug delivery applications. Polymer-based nanocarriers tagged with non-standard PET radionuclides with relatively long half-lives (e.g.
View Article and Find Full Text PDFThe rare genetic disorder Fanconi anemia, caused by a deficiency in any of at least thirteen identified genes, is characterized by cellular sensitivity to DNA interstrand crosslinks and genome instability. The excision repair cross complementing protein, ERCC1, first identified as a participant in nucleotide excision repair, appears to also act in crosslink repair, possibly in incision and at a later stage. We have investigated the relationship of ERCC1 to the Fanconi anemia pathway, using depletion of ERCC1 by siRNA in transformed normal human fibroblasts and fibroblasts from Fanconi anemia patients.
View Article and Find Full Text PDFThe disease Fanconi anemia is a genome instability syndrome characterized by cellular sensitivity to DNA interstrand cross-linking agents, manifest by decreased cellular survival and chromosomal aberrations after such treatment. There are at least 13 proteins acting in the pathway, with the FANCD2 protein apparently functioning as a late term effecter in the maintenance of genome stability. We find that the chromatin remodeling protein, Tip60, interacts directly with the FANCD2 protein in a yeast two-hybrid system.
View Article and Find Full Text PDF