The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFSenescent cells drive tissue dysfunction through the senescence-associated secretory phenotype (SASP). We uncovered a central role for mitochondria in the epigenetic regulation of the SASP, where mitochondrial-derived metabolites, specifically citrate and acetyl-CoA, fuel histone acetylation at SASP gene loci, promoting their expression. We identified the mitochondrial citrate carrier (SLC25A1) and ATP-citrate lyase (ACLY) as critical for this process.
View Article and Find Full Text PDFFor efficient, cost-effective and personalized healthcare, biomarkers that capture aspects of functional, biological aging, thus predicting disease risk and lifespan more accurately and reliably than chronological age, are essential. We developed an imaging-based chromatin and epigenetic age (ImAge) that captures intrinsic age-related trajectories of the spatial organization of chromatin and epigenetic marks in single nuclei, in mice. We show that such trajectories readily emerge as principal changes in each individual dataset without regression on chronological age, and that ImAge can be computed using several epigenetic marks and DNA labeling.
View Article and Find Full Text PDFCellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity.
View Article and Find Full Text PDFCellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity.
View Article and Find Full Text PDFMETTL3 is the catalytic subunit of the methyltransferase complex, which mediates mA modification to regulate gene expression. In addition, METTL3 regulates transcription in an enzymatic activity-independent manner by driving changes in high-order chromatin structure. However, how these functions of the methyltransferase complex are coordinated remains unknown.
View Article and Find Full Text PDFSterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age.
View Article and Find Full Text PDFGenomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF).
View Article and Find Full Text PDFBiomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age.
View Article and Find Full Text PDFApproved histone deacetylase (HDAC) inhibitors have low efficacy against the most commonly-diagnosed non-Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), but the mechanisms underlying clinical resistance are poorly understood. Using a DLBCL cell-based model, we previously demonstrated that resistance to pan-HDAC inhibitors (HDACi) is characterized by reversible growth arrest and sensitivity by mitotic arrest and apoptosis. The goal of the current study is to better define mechanisms of sensitivity and resistance to the cytotoxic effects of HDACi by using HDAC-selective inhibitors to determine which HDACs need to be targeted to achieve the sensitive and resistant phenotypes.
View Article and Find Full Text PDFGene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence.
View Article and Find Full Text PDFCellular senescence is a stable form of cell cycle arrest associated with proinflammatory responses. Senescent cells can be cleared by the immune system as a part of normal tissue homeostasis. However, senescent cells can also accumulate in aged and diseased tissues, contributing to inflammation and disease progression.
View Article and Find Full Text PDFMany cancers show an increase in incidence with age, and age is the biggest single risk factor for many cancers. However, the molecular basis of this relationship is poorly understood. Through a collection of review articles, our thematic issue discusses the link between aging and cancer in aspects including somatic mutations, proteostasis, mitochondria, metabolism, senescence, epigenetic regulation, immune regulation, DNA damage, and telomere function.
View Article and Find Full Text PDFCellular senescence plays a causal role in ageing and, in mice, depletion of p16-expressing senescent cells delays ageing-associated disorders. Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes that are also implicated as important regulators of human ageing, and ADAR inactivation causes age-associated pathologies such as neurodegeneration in model organisms. However, the role, if any, of ADARs in cellular senescence is unknown.
View Article and Find Full Text PDFAge-associated changes to the mammalian DNA methylome are well documented and thought to promote diseases of aging, such as cancer. Recent studies have identified collections of individual methylation sites whose aggregate methylation status measures chronological age, referred to as the DNA methylation clock. DNA methylation may also have value as a biomarker of healthy versus unhealthy aging and disease risk; in other words, a biological clock.
View Article and Find Full Text PDFDiffuse Large B-cell lymphoma (DLBCL) is an aggressive malignancy that has a 60 percent 5-year survival rate, highlighting a need for new therapeutic approaches. Histone deacetylase inhibitors (HDACi) are novel therapeutics being clinically-evaluated in combination with a variety of other drugs. However, rational selection of companion therapeutics for HDACi is difficult due to their poorly-understood, cell-type specific mechanisms of action.
View Article and Find Full Text PDFInanimate surfaces, or fomites, can serve as routes of transmission of enteric and respiratory pathogens. No previous studies have evaluated the impact of surface disinfection on the level of pathogen transfer from fomites to fingers. Thus, the present study investigated the change in microbial transfer from contaminated fomites to fingers following disinfecting wipe use.
View Article and Find Full Text PDFDiffuse large B cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma. While the initial treatment strategy is highly effective, relapse occurs in 40% of cases. Histone deacetylase inhibitors (HDACi) are a promising class of anti-cancer drugs but their single agent efficacy against relapsed DLBCL has been variable, ranging from few complete/partial responses to some stable disease.
View Article and Find Full Text PDF