Background And Aims: Heterotrophic plants have long been a challenge for systematists, exemplified by the base of the orchid subfamily Epidendroideae, which contains numerous mycoheterotrophic species.
Methods: Here we address the utility of organellar genomes in resolving relationships at the epidendroid base, specifically employing models of heterotachy, or lineage-specific rate variation over time. We further conduct comparative analyses of plastid genome evolution in heterotrophs and structural variation in matK.
Mol Biol Evol
September 2019
Heterotrophic plants provide evolutionarily independent, natural experiments in the genomic consequences of radically altered nutritional regimes. Here, we have sequenced and annotated the plastid genome of the endangered mycoheterotrophic orchid Hexalectris warnockii. This orchid bears a plastid genome that is ∼80% the total length of the leafy, photosynthetic Phalaenopsis, and contains just over half the number of putatively functional genes of the latter.
View Article and Find Full Text PDFHybridization is an important evolutionary factor in the diversification of many plant and animal species. Of particular interest is that historical hybridization resulting in the origin of new species or introgressants has occurred between species now geographically separated by great distances. Here, we report that Senecio massaicus, a tetraploid species native to Morocco and the Canary Islands, contains genetic material of two distinct, geographically separated lineages: a Mediterranean lineage and a mainly southern African lineage.
View Article and Find Full Text PDFOne of the longstanding questions in phylogenetic systematics is how to address incongruence among phylogenies obtained from multiple markers and how to determine the causes. This study presents a detailed analysis of incongruent patterns between plastid and ITS/ETS phylogenies of Tribe Senecioneae (Asteraceae). This approach revealed widespread and strongly supported incongruence, which complicates conclusions about evolutionary relationships at all taxonomic levels.
View Article and Find Full Text PDFConidial dispersal in Stachybotrys chartarum in response to low-velocity airflow was studied using a microflow apparatus. The maximum rate of spore release occurred during the first 5 min of airflow, followed by a dramatic reduction in dispersal that left more than 99% of the conidia attached to their conidiophores. Micromanipulation of undisturbed colonies showed that micronewton (microN) forces were needed to dislodge spore clusters from their supporting conidiophores.
View Article and Find Full Text PDF