Stinging trees from Australasia produce remarkably persistent and painful stings upon contact of their stiff epidermal hairs, called trichomes, with mammalian skin. -induced acute pain typically lasts for several hours, and intermittent painful flares can persist for days and weeks. Pharmacological activity has been attributed to small-molecule neurotransmitters and inflammatory mediators, but these compounds alone cannot explain the observed sensory effects.
View Article and Find Full Text PDFAsparaginyl endopeptidases (AEPs) catalyze the key backbone cyclization step during the biosynthesis of plant-derived cyclic peptides. Here, we report the identification of two AEPs from Momordica cochinchinensis and biochemically characterize MCoAEP2 that catalyzes the maturation of trypsin inhibitor cyclotides. Recombinantly produced MCoAEP2 catalyzes the backbone cyclization of a linear cyclotide precursor (MCoTI-II-NAL) with a k/K of 620 mM s, making it one of the fastest cyclases reported to date.
View Article and Find Full Text PDFThis study reports the isolation of two novel cysteine-rich antibacterial peptides, turgencin A and turgencin B, along with their oxidized derivatives, from the Arctic marine colonial ascidian . The peptides are post-translationally modified, containing six cysteines with an unusual disulfide connectivity of Cys-Cys, Cys-Cys, and Cys-Cys and an amidated C-terminus. Furthermore, the peptides contain methionine residues resulting in the isolation of peptides with different degrees of oxidation.
View Article and Find Full Text PDFGrb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain.
View Article and Find Full Text PDFThe backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs.
View Article and Find Full Text PDFOral activity has been described for cyclotide-containing traditional medicines, and demonstrated for reengineered cyclotides bearing grafted therapeutic epitopes, highlighting their potential for translation to the clinic. Here we report preclinical pharmacokinetic parameters for the prototypic cyclotide kalata B1 (kB1) and two orally active grafted analogues, ckb-KAL and ckb-KIN, to provide the first in vivo dose-exposure metrics for cyclotides. Native and grafted kB1 molecules exhibited multiple compartment kinetics and measurable but limited oral bioavailability of similar magnitude to several orally administered peptide drugs in the clinic.
View Article and Find Full Text PDFMomordica trypsin inhibitors (TIs) such as those isolated from the seeds of the gấc fruit, Momordica cochinchinensis (MCoTI-I and MCoTI-II), are widely used as scaffolds for drug design studies. To more effectively exploit these molecules in the development of therapeutics, there is a need for wider discovery of the natural sequence diversity among TIs from other species in the Momordica subfamily. Here we report the discovery of the encoding gene and six TIs from the seeds of the spiny gourd, Momordica dioica, four of which possess novel sequences (Modi 1, 3, 5, and 6) and two (Modi 2 and 4) of which are known peptides (TI-14, TI-17) previously identified in Momordica subangulata.
View Article and Find Full Text PDFCyclotides are macrocyclic cystine-knotted peptides most commonly found in the Violaceae plant family. Although Rinorea is the second-largest genera within the Violaceae family, few studies have examined whether or not they contain cyclotides. To further our understanding of cyclotide diversity and evolution, we examined the cyclotide content of two Rinorea species found in Southeast Asia: R.
View Article and Find Full Text PDFCyclotides are a large family of naturally occurring plant-derived macrocyclic cystine-knot peptides, with more than 400 having been identified in species from the Violaceae, Rubiaceae, Cucurbitaceae, Fabaceae, and Solanaceae families. Nevertheless, their specialized distribution within the plant kingdom remains poorly understood. In this study, the diversity of cyclotides was explored through the screening of 197 plants belonging to 43 different families.
View Article and Find Full Text PDFPlants from the genus Psychotria include species bearing cyclotides and/or alkaloids. The elucidation of factors affecting the metabolism of these molecules as well as their activities may help to understand their ecological function. In the present study, high concentrations of antioxidant indole alkaloids were found to co-occur with cyclotides in Psychotria leiocarpa and P.
View Article and Find Full Text PDFCyclotides are cyclic peptides from plants in the Violaceae, Rubiaceae, Fabaceae, Cucurbitaceae, and Solanaceae families. They are sparsely distributed in most of these families, but appear to be ubiquitous in the Violaceae, having been found in every plant so far screened from this family. However, not all geographic regions have been examined and here we report the discovery of cyclotides from a Viola species from South-East Asia.
View Article and Find Full Text PDFCyclotides are diverse plant backbone cyclized peptides that have attracted interest as pharmaceutical scaffolds, but fundamentals of their biosynthetic origin remain elusive. Backbone cyclization is a key enzyme-mediated step of cyclotide biosynthesis and confers a measure of stability on the resultant cyclotide. Furthermore, cyclization would be desirable for engineered peptides.
View Article and Find Full Text PDFPlants have evolved many strategies to protect themselves from attack, including peptide toxins that are ribosomally synthesized and thus adaptable directly by genetic polymorphisms. Certain toxins in Clitoria ternatea (butterfly pea) are cyclic cystine-knot peptides of c. 30 residues, called cyclotides, which have co-opted the plant's albumin-1 gene family for their production.
View Article and Find Full Text PDFCyclotides are macrocyclic proteins produced by plants for host defense. Although they occur sparsely in other plant families, cyclotides have been detected in every Violaceae plant species so far screened. Many of the Violaceae species examined until now have been from closely related geographical regions or habitats.
View Article and Find Full Text PDFCyclotides combine the stability of disulfide-rich peptides with the intracellular accessibility of cell-penetrating peptides, giving them outstanding potential as drug scaffolds with an ability to inhibit intracellular protein-protein interactions. To realize and optimize the application of cyclotides as a drug framework and delivery system, we studied the ability of the prototypic cyclotide, kalata B1, to enter mammalian cells. We show that kalata B1 can enter cells via both endocytosis and direct membrane translocation.
View Article and Find Full Text PDFFive new orbitides, cyclolinopeptides 21-25, were identified in flaxseed oil (Linum usitatissimum) extracts. Their HPLC-ESIMS quasimolecular ion peaks at m/z 1097.7 (21), 1115.
View Article and Find Full Text PDFBackground: Chlorotoxin is a small scorpion peptide that inhibits glioma cell migration. We investigated the importance of a major component of chlorotoxin's chemical structure - four disulfide bonds - to its tertiary structure and biological function.
Results: Five disulfide bond analogs of chlorotoxin were synthesized, with l-α-aminobutyric acid residues replacing each or all of the disulfide bonds.
Cyclic proteins have evolved for millions of years across all kingdoms of life to confer structural stability over their acyclic counterparts while maintaining intrinsic functional properties. Here, we show that cyclic miniproteins (or peptides) from Momordica (Cucurbitaceae) seeds evolved in species that diverged from an African ancestor around 19 Ma. The ability to achieve head-to-tail cyclization of Momordica cyclic peptides appears to have been acquired through a series of mutations in their acyclic precursor coding sequences following recent and independent gene expansion event(s).
View Article and Find Full Text PDFMCoTI-I and MCoTI-II (short for Momordica cochinchinensis Trypsin Inhibitor-I and -II, respectively) are attractive candidates for developing novel intracellular-targeting drugs because both are exceptionally stable and can internalize into cells. These seed-derived cystine knot peptides are examples of how natural product discovery efforts can lead to biomedical applications. However, discovery efforts are sometimes hampered by the limited availability of seed materials, highlighting the need for efficient extraction methods.
View Article and Find Full Text PDFCyclotides are a family of naturally occurring backbone-cyclized macrocyclic mini-proteins from plants that have a knotted trio of intramolecular disulfide bonds. Their structural features imbue cyclotides with extraordinary stability against degradation at elevated temperatures or in the presence of proteolytic enzymes. The plasticity of their intracysteine loop sequences is exemplified by the more than 250 natural cyclotides sequenced to date, and this tolerance to sequence variation, along with their diverse bioactivities, underpins the suitability of the cyclic cystine knot motif as a valuable drug design scaffold and research tool for protein engineering studies.
View Article and Find Full Text PDFCyclotides are a large family of plant peptides that are structurally defined by their cyclic backbone and a trifecta of disulfide bonds, collectively known as the cyclic cystine knot (CCK) motif. Structurally similar cyclotides have been isolated from plants within the Rubiaceae, Violaceae, and Fabaceae families and share the CCK motif with trypsin-inhibitory knottins from a plant in the Cucurbitaceae family. Cyclotides have previously been reported to be encoded by dedicated genes or as a domain within a knottin-encoding PA1-albumin-like gene.
View Article and Find Full Text PDFHundreds of ribosomally synthesized cyclopeptides have been isolated from all domains of life, the vast majority having been reported in the last 15 years. Studies of cyclic peptides have highlighted their exceptional potential both as stable drug scaffolds and as biomedicines in their own right. Despite this, computational techniques for cyclopeptide identification are still in their infancy, with many such peptides remaining uncharacterized.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2011
Cyclotides are plant-derived proteins that have a unique cyclic cystine knot topology and are remarkably stable. Their natural function is host defense, but they have a diverse range of pharmaceutically important activities, including uterotonic activity and anti-HIV activity, and have also attracted recent interest as templates in drug design. Here we report an unusual biosynthetic origin of a precursor protein of a cyclotide from the butterfly pea, Clitoria ternatea, a representative member of the Fabaceae plant family.
View Article and Find Full Text PDFCyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties.
View Article and Find Full Text PDFIn recent years, the discovery of a large family of macrocyclic peptides, the cyclotides, has revealed Natures ingenuity in molecular drug design. The incorporation of a cyclic peptide backbone and a knotted arrangement of disulfide bridges into their structures confers extraordinary chemical, thermal, and enzymatic stability on these biologically active peptides. However, these structural attributes present challenges in the identification of cyclotides.
View Article and Find Full Text PDF