Net ecosystem exchange (NEE) is an essential climate indicator of the direction and magnitude of carbon dioxide (CO) transfer between land surfaces and the atmosphere. Improved estimates of NEE can serve to better constrain spatiotemporal characteristics of terrestrial carbon fluxes, improve verification of land models, and advance monitoring of Earth's terrestrial ecosystems. Spatiotemporal NEE information developed by combining ground-based flux tower observations and spatiotemporal remote sensing datasets are of potential value in benchmarking land models.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Ecohydrologic fluxes within atmosphere, vegetation, and soil systems exhibit a joint variability that arises from forcing and feedback interactions. These interactions cause fluctuations to propagate between variables at many time scales. In an ecosystem, this connectivity dictates responses to climate change, land-cover change, and weather events and must be characterized to understand resilience and sensitivity.
View Article and Find Full Text PDF