Purpose: An understanding of how hematopoietic cells respond to therapy that causes myelosuppression will help develop approaches to prevent this potentially life-threatening toxicity. The goal of this study was to determine how human myeloid precursor cells respond to temozolomide (TMZ)-induced DNA damage.
Experimental Design: We developed an ex vivo primary human myeloid precursor cells model system to investigate the involvement of cell-death pathways using a known myelosuppressive regimen of O(6)-benzylguanine (6BG) and TMZ.
Hum Gene Ther Methods
February 2012
In the production of lentiviral vector for clinical studies the purity of the final product is of vital importance. To remove plasmid and producer cell line DNA, investigators have incubated the vector product with Benzonase, a bacterially derived DNase. As an alternative we investigated the use of Pulmozyme, a U.
View Article and Find Full Text PDFPurpose: Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However, one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens.
View Article and Find Full Text PDFBackground. The use of 2-[(18)F]fluoro-2-deoxy-D-glucose ([(18)F]FDG) may help to establish the antitumor activity of enzastaurin, a novel protein kinase C-beta II (PKC-betaII) inhibitor, in mouse xenografts. Methods.
View Article and Find Full Text PDFObjective: Using a clinically relevant transduction strategy, we investigated to what extent hematopoietic stem cells in lineage-negative bone marrow (Lin(neg) BM) could be genetically modified with an foamy virus (FV) vector that expresses the DNA repair protein, O(6)-methylguanine DNA methyltransferase (MGMT(P140K)) and selected in vivo with submyeloablative or myeloablative alkylator therapy.
Materials And Methods: Lin(neg) BM was transduced at a low multiplicity-of-infection with the FV vector, MD9-P140K, which coexpresses MGMT(P140K) and the enhanced green fluorescent protein, transplanted into C57BL/6 mice, and mice treated with submyeloablative or myeloablative alkylator therapy. The BM was analyzed for the presence of in vivo selected, MD9-P140K-transduced cells at 6 months post-transplantation and subsequently transplanted into secondary recipient animals.