Manufacturing autologous chimeric antigen receptor (CAR) T cell therapeutics is complex, and many patients experience treatment delays or cannot be treated at all. Although current allogeneic CAR products have the potential to overcome manufacturing bottlenecks, they are subject to immune rejection and failure to persist in the host, and thus do not provide the same level of efficacy as their autologous counterparts. Here, we aimed to develop universal allogeneic CAR T cells that evade the immune system and produce a durable response.
View Article and Find Full Text PDFAllogeneic, off-the-shelf (OTS) chimeric antigen receptor (CAR) cell therapies have the potential to reduce manufacturing costs and variability while providing broader accessibility to cancer patients and those with other diseases. However, host-versus-graft reactivity can limit the durability and efficacy of OTS cell therapies requiring new strategies to evade adaptive and innate-immune responses. Human herpes virus-8 (HHV8) maintains infection, in part, by evading host T and natural killer (NK) cell attack.
View Article and Find Full Text PDFNatural killer (NK) cells expressing chimeric antigen receptors (CARs) are a promising anticancer immunotherapy, leveraging both innate NK cell antitumor activity and target-specific cytotoxicity. Inducible MyD88/CD40 (iMC) is a potent, rimiducid-regulated protein switch that has been deployed previously as a T-cell activator to enhance proliferation and persistence of CAR-modified T cells. In this study, iMC was extended to CAR-NK cells to enhance their growth and augment cytotoxicity against tumor cells.
View Article and Find Full Text PDFBackground: Gas Permeable Rapid Expansion (G-Rex) bioreactors have been shown to efficiently expand immune cells intended for therapeutic use, but do not address the complexity of the viral transduction step required for many engineered T-cell products. Here we demonstrate a novel method for transduction of activated T cells with Vectofusin-1 reagent. Transduction is accomplished in suspension, in G-Rex bioreactors.
View Article and Find Full Text PDFSuccessful adoptive chimeric antigen receptor (CAR) T-cell therapies against hematological malignancies require CAR-T expansion and durable persistence following infusion. Balancing increased CAR-T potency with safety, including severe cytokine-release syndrome (sCRS) and neurotoxicity, warrants inclusion of safety mechanisms to control in vivo CAR-T activity. Here, we describe a novel CAR-T cell platform that utilizes expression of the toll-like receptor (TLR) adaptor molecule, MyD88, and tumor-necrosis factor family member, CD40 (MC), tethered to the CAR molecule through an intentionally inefficient 2A linker system, providing a constitutive signal that drives CAR-T survival, proliferation, and antitumor activity against CD19 and CD123 hematological cancers.
View Article and Find Full Text PDFUse of chimeric antigen receptors (CARs) as the basis of targeted adoptive T cell therapies has enabled dramatic efficacy against multiple hematopoietic malignancies, but potency against bulky and solid tumors has lagged, potentially due to insufficient CAR-T cell expansion and persistence. To improve CAR-T cell efficacy, we utilized a potent activation switch based on rimiducid-inducible MyD88 and CD40 (iMC)-signaling elements. To offset potential toxicity risks by this enhanced CAR, an orthogonally regulated, rapamycin-induced, caspase-9-based safety switch (iRC9) was developed to allow elimination of CAR-T cells.
View Article and Find Full Text PDFAnti-tumor efficacy of T cells engineered to express chimeric antigen receptors (CARs) is dependent on their specificity, survival, and in vivo expansion following adoptive transfer. Toll-like receptor (TLR) and CD40 signaling in T cells can improve persistence and drive proliferation of antigen-specific CD4 and CD8 T cells following pathogen challenge or in graft-versus-host disease (GvHD) settings, suggesting that these costimulatory pathways may be co-opted to improve CAR-T cell persistence and function. Here, we present a novel strategy to activate TLR and CD40 signaling in human T cells using inducible MyD88/CD40 (iMC), which can be triggered in vivo via the synthetic dimerizing ligand, rimiducid, to provide potent costimulation to CAR-modified T cells.
View Article and Find Full Text PDFBackground: Gold nanoparticles (AuNPs) have shown great promise as scaffolds for gene therapy vectors due to their attractive physiochemical properties which include biocompatibility, ease of functionalization via the nearly covalent gold-sulfur dative bond, and surface plasmon optical properties. Previously, we synthesized stable AuNP-polyamidoamine (AuPAMAM) conjugates and showed their success in vitro as non-viral gene delivery vectors.
Results: In this study, we systematically perturbed each component of the AuPAMAM conjugates and analyzed the resulting effect on transfection efficiency.
Adoptive transfer of gene modified T cells provides possible immunotherapy for patients with cancers refractory to other treatments. We have previously used the non-viral piggyBac transposon system to gene modify human T cells for potential immunotherapy. However, these previous studies utilized adoptive transfer of modified human T cells to target cancer xenografts in highly immunodeficient (NOD-SCID) mice that do not recapitulate an intact immune system.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are promising vehicles for cancer immunotherapy, with demonstrated efficacy in immune delivery and innate cell stimulation. Nevertheless, their potential has yet to be assessed in the in vivo application of peptide cancer vaccines. In this study, it is hypothesized that the immune distribution and adjuvant qualities of AuNPs could be leveraged to facilitate delivery of the ovalbumin (OVA) peptide antigen and the CpG adjuvant and enhance their therapeutic effect in a B16-OVA tumor model.
View Article and Find Full Text PDFHuman T cells can be genetically modified to express tumor-associated antigens (TAA) for the induction of tumor-specific immunity, suggesting that T cells may be alternative candidates of effective antigen-presenting cells (TAPC) and may be useful in vivo as cellular cancer vaccines. The effective induction of TAA-specific T cell immune responses requires activation of T cells by CD3/CD28 antibodies and the presence of proinflammatory cytokines such as interleukin-7 (IL-7) and interleukin-12 (IL-12). Here, we describe the technique of preparing activated human TAPC pulsed with TAA peptides for the induction of tumor antigen-specific T cell immunity in vitro.
View Article and Find Full Text PDFThe development of efficient and biocompatible non-viral vectors for gene therapy remains a great challenge, and exploiting the properties of both nanoparticle carriers and cationic polymers is an attractive approach. In this work, we have developed gold nanoparticle (AuNP) polyamidoamine (PAMAM) conjugates for use as non-viral transfection agents. AuPAMAM conjugates were prepared by crosslinking PAMAM dendrimers to carboxylic-terminated AuNPs via EDC and sulfo-NHS chemistry.
View Article and Find Full Text PDFGold nanoparticles (AuNP) have been widely used for drug delivery and have recently been explored for applications in cancer immunotherapy. Although AuNPs are known to accumulate heavily in the spleen, the particle distribution within immune cells has not been thoroughly studied. Here, cellular distribution of Cy5 labeled 50 nm AuNPs is characterized within the immune populations of the spleen from naïve and tumor bearing mice using flow cytometry.
View Article and Find Full Text PDFContemporary views of tumorigenesis regard its inception as a convergence of genetic mutation and developmental context. Glioma is the most common and deadly malignancy in the CNS; therefore, understanding how regulators of glial development contribute to its formation remains a key question. Previously we identified nuclear factor I-A (NFIA) as a key regulator of developmental gliogenesis, while miR-223 has been shown to repress NFIA expression in other systems.
View Article and Find Full Text PDFAblative treatments such as photothermal therapy (PTT) are attractive anticancer strategies because they debulk accessible tumor sites while simultaneously priming antitumor immune responses. However, the immune response following thermal ablation is often insufficient to treat metastatic disease. Here we demonstrate that PTT induces the expression of proinflammatory cytokines and chemokines and promotes the maturation of dendritic cells within tumor-draining lymph nodes, thereby priming antitumor T cell responses.
View Article and Find Full Text PDFTransposons permit permanent cellular genome engineering in vivo. However, transgene expression falls rapidly postdelivery due to a variety of mechanisms, including immune responses. We hypothesized that delaying initial transgene expression would improve long-term transgene expression by using an engineered piggyBac transposon system that can regulate expression.
View Article and Find Full Text PDFGold nanoparticle accumulation in immune cells has commonly been viewed as a side effect for cancer therapeutic delivery; however, this phenomenon can be utilized for developing gold nanoparticle mediated immunotherapy. Here, we conjugated a modified CpG oligodeoxynucleotide immune stimulant to gold nanoparticles using a simple and scalable self-assembled monolayer scheme that enhanced the functionality of CpG in vitro and in vivo. Nanoparticles can attenuate systemic side effects by enhancing CpG delivery passively to innate effector cells.
View Article and Find Full Text PDFNanocarriers have been explored to improve the delivery of tumor antigens to dendritic cells (DCs). Gold nanoparticles are attractive nanocarriers because they are inert, non-toxic, and can be readily endocytosed by DCs. Here, we designed novel gold-based nanovaccines (AuNVs) using a simple self-assembling bottom-up conjugation method to generate high-peptide density delivery and effective immune responses with limited toxicity.
View Article and Find Full Text PDFTranscriptional cascades that operate over the course of lineage development are fundamental mechanisms that control cellular differentiation. In the developing central nervous system (CNS), these mechanisms are well characterized during neurogenesis, but remain poorly defined during neural stem cell commitment to the glial lineage. NFIA is a transcription factor that plays a crucial role in the onset of gliogenesis; we found that its induction is regulated by the transcription factor Sox9 and that this relationship mediates the initiation of gliogenesis.
View Article and Find Full Text PDFThe success of cancer vaccines is dependent on the delivery of tumor-associated antigens (TAAs) within lymphoid tissue in the context of costimulatory molecules and immune stimulatory cytokines. Dendritic cells (DCs) are commonly utilized to elicit antitumor immune responses due to their attractive costimulatory molecule and cytokine expression profile. However, the efficacy of DC-based vaccines is limited by the poor viability and lymph-node migration of exogenously generated DCs in vivo.
View Article and Find Full Text PDFGold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat.
View Article and Find Full Text PDFAdoptive transfer of antigen-specific cytotoxic T lymphocytes has shown promise for the therapy of cancer. However, tumor-specific T cells are susceptible to diverse inhibitory signals from the tumor microenvironment. The Akt/protein kinase B plays a central role in T-cell proliferation, function, and survival and we hypothesized that expression of constitutively active Akt (caAkt) in T cells could provide resistance to many of these tumor-associated inhibitory mechanisms.
View Article and Find Full Text PDFFor adoptive T-cell therapy to be effective against solid tumors, tumor-specific T cells must be able to migrate to the tumor site. One requirement for efficient migration is that the effector cells express chemokine receptors that match the chemokines produced either by tumor or tumor-associated cells. In this study, we investigated whether the tumor trafficking of activated T cells (ATCs) bearing a chimeric antigen receptor specific for the tumor antigen GD2 (GD2-CAR) could be enhanced by forced coexpression of the chemokine receptor CCR2b, as this receptor directs migration toward CCL2, a chemokine produced by many tumors, including neuroblastoma.
View Article and Find Full Text PDFTo function optimally as vaccines, dendritic cells (DCs) must actively migrate to lymphoid organs and maintain a viable, mature state for sufficient time to effectively present their Ag to cognate T cells. Unfortunately, mature DCs rapidly lose viability and function after injection, and only a minority leaves the vaccine site and migrates to lymph nodes. We show that all of these functions can be enhanced in DCs by removal of IL-1R-associated kinase M (IRAK-M).
View Article and Find Full Text PDF