The sensitivity of current and planned gravitational wave interferometric detectors is limited, in the most critical frequency region around 100 Hz, by a combination of quantum noise and thermal noise. The latter is dominated by Brownian noise: thermal motion originating from the elastic energy dissipation in the dielectric coatings used in the interferometer mirrors. The energy dissipation is a material property characterized by the mechanical loss angle.
View Article and Find Full Text PDFA =515 laser generating joule-level pulses at 1 kHz repetition rate was demonstrated by frequency doubling 1.2 J, 2 ns temporally shaped square pulses from a cryogenically cooled Yb:YAG laser in an LBO crystal. A doubling efficiency of 78% resulted in 0.
View Article and Find Full Text PDFWe demonstrate the generation of 1.1 J pulses of picosecond duration at 1 kHz repetition rate (1.1 kW average power) from a diode-pumped chirped pulse amplification Yb:YAG laser.
View Article and Find Full Text PDFThe importance of high intensity few- to single-cycle laser pulses for applications such as intense isolated attosecond pulse generation is constantly growing, and with the breakdown of the monochromatic approximation in field ionization models, the few-cycle pulse (FCP) interaction with solids near the damage threshold has ushered a new paradigm of nonperturbative light-matter interaction. In this Letter, we systematically study and contrast how femtosecond laser-induced damage and ablation behaviors of /-based reflective multilayer dielectric thin film systems vary between FCP and 110 fs pulses. With time-resolved surface microscopy and ex situ analysis, we show that there are distinct differences in the interaction depending on the pulse duration, specifically in the "blister" morphology formation at lower fluences (damage) as well as in the dynamics of debris formation at higher fluences (ablation).
View Article and Find Full Text PDFHigh mechanical stress can affect the performance of multilayer thin film optical coatings, causing wavefront aberrations. This is particularly important if the multilayer stack is deposited onto thin substrates, such as those used in adaptive optics. Stress in thin film coatings is dependent on the deposition process, and ion beam sputtering (IBS) thin films are known to have high compressive stress.
View Article and Find Full Text PDF