Publications by authors named "Aaron D Milstein"

Design of hardware based on biological principles of neuronal computation and plasticity in the brain is a leading approach to realizing energy- and sample-efficient AI and learning machines. An important factor in selection of the hardware building blocks is the identification of candidate materials with physical properties suitable to emulate the large dynamic ranges and varied timescales of neuronal signaling. Previous work has shown that the all-or-none spiking behavior of neurons can be mimicked by threshold switches utilizing material phase transitions.

View Article and Find Full Text PDF

During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during 'offline' resting periods, brief neuronal population bursts can 'replay' sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment.

View Article and Find Full Text PDF

It is generally appreciated that storing memories of specific events in the mammalian brain, and associating features of the environment with behavioral outcomes requires fine-tuning of the strengths of connections between neurons through synaptic plasticity. It is less understood whether the organization of neuronal circuits comprised of multiple distinct neuronal cell types provides an architectural prior that facilitates learning and memory by generating unique patterns of neuronal activity in response to different stimuli in the environment, even before plasticity and learning occur. Here we simulated a neuronal network responding to sensory stimuli, and systematically determined the effects of specific neuronal cell types and connections on three key metrics of neuronal sensory representations: sparsity, selectivity, and discriminability.

View Article and Find Full Text PDF

Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here, we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields.

View Article and Find Full Text PDF

The mammalian hippocampus forms a cognitive map using neurons that fire according to an animal's position ("place cells") and many other behavioral and cognitive variables. The responses of these neurons are shaped by their presynaptic inputs and the nature of their postsynaptic integration. In CA1 pyramidal neurons, spatial responses in vivo exhibit a strikingly supralinear dependence on baseline membrane potential.

View Article and Find Full Text PDF

Learning is primarily mediated by activity-dependent modifications of synaptic strength within neuronal circuits. We discovered that place fields in hippocampal area CA1 are produced by a synaptic potentiation notably different from Hebbian plasticity. Place fields could be produced in vivo in a single trial by potentiation of input that arrived seconds before and after complex spiking.

View Article and Find Full Text PDF

The impact of dentate mossy cells on hippocampal activity remained uncertain despite a long history of investigation. In this issue of Neuron, Hashimotodani et al. (2017) discover a presynaptically expressed form of long-term potentiation at mossy cell outputs, shedding light on their mysterious function.

View Article and Find Full Text PDF

Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons.

View Article and Find Full Text PDF

In CA1 pyramidal neurons, correlated inputs trigger dendritic plateau potentials that drive neuronal plasticity and firing rate modulation. Given the strong electrotonic coupling between soma and axon, the >25 mV depolarization associated with the plateau could propagate through the axon to influence action potential initiation, propagation, and neurotransmitter release. We examined this issue in brain slices, awake mice, and a computational model.

View Article and Find Full Text PDF

Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter.

View Article and Find Full Text PDF

Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity.

View Article and Find Full Text PDF

The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs.

View Article and Find Full Text PDF

Glutamate receptors of the AMPA subtype (AMPARs) mediate fast synaptic transmission in the brain. These ionotropic receptors rely on auxiliary subunits known as transmembrane AMPAR regulatory proteins (TARPs) for both trafficking and gating. Recently, a second family of AMPAR binding proteins, referred to as cornichons, were identified and also proposed to function as auxiliary subunits.

View Article and Find Full Text PDF

Previous work has established stargazin and its related family of transmembrane AMPA receptor regulatory proteins (TARPs) as auxiliary subunits of AMPA receptors (AMPARs) that control synaptic strength both by targeting AMPARs to synapses through an intracellular PDZ-binding motif and by modulating their gating through an extracellular domain. However, TARPs gamma-2 and gamma-8 differentially regulate the synaptic targeting of AMPARs, despite having identical PDZ-binding motifs. Here, we investigate the structural elements that contribute to this functional difference between TARP subtypes by using domain transplantation and truncation.

View Article and Find Full Text PDF

Synaptic AMPA receptors (AMPARs) are regulated by a family of auxiliary subunits known as transmembrane AMPA receptor regulatory proteins (TARPs). TARPs control the trafficking and gating of AMPARs. However, the number of TARP molecules that assemble within individual AMPAR channels is unknown.

View Article and Find Full Text PDF

In traditional folk medicine, Xanthoxylum plants are referred to as 'toothache trees' because their anesthetic or counter-irritant properties render them useful in the treatment of pain. Psychophysical studies have identified hydroxy-alpha-sanshool as the compound most responsible for the unique tingling and buzzing sensations produced by Szechuan peppercorns or other Xanthoxylum preparations. Although it is generally agreed that sanshool elicits its effects by activating somatosensory neurons, the underlying cellular and molecular mechanisms remain a matter of debate.

View Article and Find Full Text PDF

Presynaptic glutamate release elicits brief waves of membrane depolarization in neurons by activating AMPA receptors. Depending on its precise size and shape, current through AMPA receptors gates downstream processes like NMDA receptor activation and action potential generation. Over a decade of research on AMPA receptor structure and function has identified binding sites on AMPA receptors for agonists, antagonists and allosteric modulators as well as key residues underlying differences in the gating behavior of various AMPA receptor subtypes.

View Article and Find Full Text PDF

A family of transmembrane AMPA receptor regulatory proteins (TARPs) profoundly affects the trafficking and gating of AMPA receptors (AMPARs). Although TARP subtypes are differentially expressed throughout the CNS, it is unclear whether this imparts functional diversity to AMPARs in distinct neuronal populations. Here, we examine the effects of each TARP subtype on the kinetics of AMPAR gating in heterologous cells and in neurons.

View Article and Find Full Text PDF

AMPA-type glutamate receptors (GluRs) mediate most excitatory signaling in the brain and are composed of GluR principal subunits and transmembrane AMPA receptor regulatory protein (TARP) auxiliary subunits. Previous studies identified four mammalian TARPs, gamma-2 (or stargazin), gamma-3, gamma-4, and gamma-8, that control AMPA receptor trafficking, gating, and pharmacology. Here, we explore roles for the homologous gamma-5 and gamma-7 proteins, which were previously suggested not to serve as TARPs.

View Article and Find Full Text PDF

Neural activity regulates dendrite and synapse development, but the underlying molecular mechanisms are unclear. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is an important sensor of synaptic activity, and the scaffold protein liprinalpha1 is involved in pre- and postsynaptic maturation. Here we show that synaptic activity can suppress liprinalpha1 protein level by two pathways: CaMKII-mediated degradation and the ubiquitin-proteasome system.

View Article and Find Full Text PDF

The function of the multi-PDZ domain scaffold protein GRIP1 (glutamate receptor interacting protein 1) in neurons is unclear. To explore the function of GRIP1 in hippocampal neurons, we used RNA interference (RNAi) to knock down the expression of GRIP1. Knockdown of GRIP1 by small interfering RNA (siRNA) in cultured hippocampal neurons caused a loss of dendrites, associated with mislocalization of the GRIP-interacting proteins GIuR2 (AMPA receptor subunit), EphB2 (receptor tyrosine kinase) and KIF5 (also known as kinesin 1; microtubule motor).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncjuh1r4q3pbigfjt8ak767hfvdvi8k5h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once