Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases.
View Article and Find Full Text PDFStructure and function of therapeutic antibodies can be modulated by a variety of post-translational modifications (PTM). Tyrosine (Tyr) sulfation is a type of negatively charged PTM that occurs during protein trafficking through the Golgi. In this study, we discovered that an anti-interleukin (IL)-4 human IgG1, produced by transiently transfected HEK293 cells, contained a fraction of unusual negatively charged species.
View Article and Find Full Text PDFRapidly producing drug-like antibody therapeutics for lead molecule discovery and candidate optimization is typically accomplished by large-scale transient gene expression technologies (TGE) with cultivated mammalian cells. The TGE methodologies have been extensively developed over the past three decades, yet produce significantly lower yields than the stable cell line approach, facing the technical challenge of achieving universal high expression titers for a broad range of antibodies and therapeutics modalities. In this study, we explored various parameters for antibody production in the TGE cell host Expi293F and ExpiCHO-S with the transfection reagents ExpiFectamine and polyethylenimine.
View Article and Find Full Text PDFTreatment of monogenetic disorders using vectors based on adeno-associated virus (AAV) is an area of intense interest. AAV is non-pathogenic human virus, and preexisting capsid antibodies are prevalent in the population posing a challenge to the safety and efficacy of AAV-mediated gene therapies. In this study, we investigated the risk of AAV-mediated complement activation when sera from a cohort of human donors were exposed to AAV9 capsid.
View Article and Find Full Text PDFThe diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction.
View Article and Find Full Text PDFThis study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG and murine IgG generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™.
View Article and Find Full Text PDFGlycans as sugar polymers are important metabolic, structural, and physiological regulators for cellular and biological functions. They are often classified as critical quality attributes to antibodies and recombinant fusion proteins, given their impacts on the efficacy and safety of biologics drugs. Recent reports on the conjugates of N-acetyl-galactosamine and mannose-6-phosphate for lysosomal degradation, Fab glycans for antibody diversification, as well as sialylation therapeutic modulations and O-linked applications, have been fueling the continued interest in glycoengineering.
View Article and Find Full Text PDFLarge-scale transient expression in Chinese Hamster Ovary (CHO) cells provides a rapid protein production method with a potential start-to-end alignment advantage for biotherapeutics drug discovery. In this chapter, experimental protocols are illustrated for transient expression of therapeutic glycoproteins with improved galactosylation and sialylation in ExpiCHO-S™ system. To reduce the production cost, we also describe a novel procedure for PEI-mediated transfection in ExpiCHO-S™ cells that supports therapeutic protein expression comparable to the level with ExpiFectamine™-based transfection.
View Article and Find Full Text PDFSite specific integration (SSI) expression systems offer robust means of generating highly productive and stable cell lines for traditional monoclonal antibodies. As complex modalities such as antibody-like molecules comprised of greater than two peptides become more prevalent, greater emphasis needs to be placed on the ability to produce appreciable quantities of the correct product of interest (POI). The ability to screen several transcript stoichiometries could play a large role in ensuring high amounts of the correct POI.
View Article and Find Full Text PDFAntibodies (Basel)
March 2021
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes.
View Article and Find Full Text PDFAs discovery research organizations push more molecules and new modalities through their company pipelines, there comes a need to widen purification development and production bandwidth by increasing automation and throughput. Continuous processing technologies have the unique property of reducing manufacturing floor space and reducing costs. We can speed development and production by implementing automation and continuous process technologies early in discovery research.
View Article and Find Full Text PDFThe fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD.
View Article and Find Full Text PDFLarge-scale transient expression in mammalian cells is a rapid protein production technology often used to shorten overall timelines for biotherapeutics drug discovery. In this study we demonstrate transient expression in a Chinese hamster ovary (CHO) host (ExpiCHO-S™) cell line capable of achieving high recombinant antibody expression titers, comparable to levels obtained using human embryonic kidney (HEK) 293 cells. For some antibodies, ExpiCHO-S™ cells generated protein materials with better titers and improved protein quality characteristics (i.
View Article and Find Full Text PDFAdvancement in high-throughput screening methods of novel therapeutic proteins for early stage research and development, specifically mAbs, have given mid-scale (milligram to gram scale) purification groups access to more of these molecules. The available purification technologies built to support mid-scale production was not efficient or versatile enough to keep up with this surge. To remedy this problem, we have designed and built a custom instrument using an ÄKTA Pure.
View Article and Find Full Text PDFProtein modifications by intricate cellular machineries often redesign the structure and function of existing proteins to impact biological networks. Disulfide bond formation between cysteine (Cys) pairs is one of the most common modifications found in extracellularly-destined proteins, key to maintaining protein structure. Unpaired surface cysteines on secreted mammalian proteins are also frequently found disulfide-bonded with free Cys or glutathione (GSH) in circulation or culture, the mechanism for which remains unknown.
View Article and Find Full Text PDFBispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format.
View Article and Find Full Text PDFThe formation and characterization of an activated complex of the visual pigment rhodopsin and its downstream signaling partner transducin have been the subject of intense focus by several research groups. While the subunit composition of the activated complex is still the subject of some controversy, our laboratory [Xie, G., D'Antona, A.
View Article and Find Full Text PDFProtein biosynthesis and extracellular secretion are essential biological processes for therapeutic protein production in mammalian cells, which offer the capacity for correct folding and proper post-translational modifications. In this study, we have generated bispecific therapeutic fusion proteins in mammalian cells by combining a peptide and an antibody into a single open reading frame. A neutralizing peptide directed against interleukin-17A (IL17A) was genetically fused to the N termini of an anti-IL22 antibody, through either the light chain, the heavy chain, or both chains.
View Article and Find Full Text PDFThe interaction of rhodopsin and transducin has been the focus of study for more than 30 years, but only recently have efforts to purify an activated complex in detergent solution materialized. These efforts have used native rhodopsin isolated from bovine retina and employed either sucrose density gradient centrifugation or size exclusion chromatography to purify the complex. While there is general agreement on most properties of the activated complex, subunit stoichiometry is not yet settled, with rhodopsin/transducin molar ratios of both 2/1 and 1/1 reported.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) comprise the largest family of membrane proteins in the human genome and mediate cellular responses to an extensive array of hormones, neurotransmitters and sensory stimuli. Although some crystal structures have been determined for GPCRs, most are for modified forms, showing little basal activity, and are bound to inverse agonists or antagonists. Consequently, these structures correspond to receptors in their inactive states.
View Article and Find Full Text PDFActivation of a G-protein-coupled receptor involves changes in specific microdomain interactions within the transmembrane region of the receptor. Here, we have focused on the role of L207, proximal to the DRY motif of the human cannabinoid receptor 1 in the interconversion of the receptor resting and active states. Ligand binding analysis of the mutant receptor L207A revealed an enhanced affinity for agonists (three- to six-fold) and a diminished affinity for inverse agonists (19- to 35-fold) compared to the wild-type receptor, properties characteristic of constitutive activity.
View Article and Find Full Text PDFHuman cannabinoid receptor 1 (CB(1)) has attracted substantial interest as a potential therapeutic target for treating obesity and other obsessive disorders. An understanding of the mechanism governing the transition of the CB(1) receptor between its inactive and active states is critical for understanding how therapeutics can selectively regulate receptor activity. We have examined the importance of the Thr at position 210 in CB(1) in this transition, a residue predicted to be on the same face of the helix as the Arg of the DRY motif highly conserved in the G protein-coupled receptor superfamily.
View Article and Find Full Text PDF