Publications by authors named "Aaron Conovaloff"

Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor.

View Article and Find Full Text PDF

Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid.

View Article and Find Full Text PDF

Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin.

View Article and Find Full Text PDF

Cultured DRGs in different gel scaffolds were analyzed using CA RS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CA RS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, omega(p)-omega(s), to match the vibration of C-H bonds in the cell membrane, the CA RS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity.

View Article and Find Full Text PDF

Chondroitin sulfate (CS) expression is increased in the glial scar following spinal cord injury demonstrating the importance understanding the role of CS in the central nervous system (CNS). There have been conflicting studies on the effects of the most abundant types of CS, chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate (C6S), found in the CNS. In this study, the effects of C4S and C6S on rat embryonic day 18 cortical neurons were investigated.

View Article and Find Full Text PDF