Publications by authors named "Aaron Cipriano"

Magnesium (Mg) and its alloys are a class of promising materials for biodegradable orthopedic and craniomaxillofacial implants; however, rapid release of hydrogen gas remains a key challenge for clinical translation. This study reported the optimal parameters of electrophoretic deposition (EPD), at which magnesium oxide nanoparticles (nMgO) could be deposited onto Mg substrates with homogeneous surface morphology and elemental distribution. The results showed that the distribution and uniformity of the nMgO coatings on Mg improved when the nMgO concentration in ethanol increased and the time of applied voltage decreased.

View Article and Find Full Text PDF

Unlabelled: Magnesium (Mg) and its alloys have been widely investigated as the most promising biodegradable metals to replace conventional non-degradable metals for temporary medical implant applications. New Mg alloys have been developed for medical applications in recent years; and the concept of alloying Mg with less-toxic elements have aroused tremendous interests due to the promise to address the problems associated with rapid degradation of Mg without compromising its cytocompatibility and biocompatibility. Of particular interests for orthopedic/spinal implant applications are the additions of calcium (Ca) and strontium (Sr) into Mg matrix because of their beneficial properties for bone regeneration.

View Article and Find Full Text PDF

This article reports the degradation and biological properties of as-drawn Mg-4Zn-1Sr (designated as ZSr41) and pure Mg (P-Mg) wires as bioresorbable intramedullary pins for bone repair. Specifically, their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs) and degradation in vitro, and their biological effects on peri-implant tissues and in vivo degradation in rat tibiae were studied. The as-drawn ZSr41 pins showed a significantly faster degradation than P-Mg in vitro and in vivo.

View Article and Find Full Text PDF

Unlabelled: This article reports anodization of Mg in KOH electrolyte and the associated surface, degradation, and biological properties for bioresorbable implant applications. The preparation procedures for electrodes and anodization setup significantly enhanced reproducibility of samples. The results of anodization performed at the applied potentials of 1.

View Article and Find Full Text PDF

This article reports the behaviors of bone-marrow-derived mesenchymal stem cells (BMSCs) in the direct culture with four Mg-4Zn-Sr alloys ( = 0.15, 0.5, 1.

View Article and Find Full Text PDF

Unlabelled: Crystalline Mg-Zinc (Zn)-Strontium (Sr) ternary alloys consist of elements naturally present in the human body and provide attractive mechanical and biodegradable properties for a variety of biomedical applications. The first objective of this study was to investigate the degradation and cytocompatibility of four Mg-4Zn-xSr alloys (x=0.15, 0.

View Article and Find Full Text PDF

Unlabelled: Previous studies indicated that local delivery of strontium effectively increased bone quality and formation around osseointegrating implants. Therefore, implant materials with long-lasting and controllable strontium release are avidly pursued. The central objective of the present study was to investigate the in vivo biocompatibility, metabolism and osteogenic activity of the bioabsorbable Mg-1Sr (wt.

View Article and Find Full Text PDF

Ultrasensitive detection and spatially resolved mapping of neurotransmitters, dopamine and serotonin, are critical to facilitate understanding brain functions and investigate the information processing in neural networks. In this work, we demonstrated single molecule detection of dopamine and serotonin using a graphene-Au nanopyramid heterostructure platform. The quasi-periodic Au structure boosts high-density and high-homogeneity hotspots resulting in ultrahigh sensitivity with a surface enhanced Raman spectroscopic (SERS) enhancement factor ∼10(10).

View Article and Find Full Text PDF

Over the past decades, self-assembled, vertically-aligned nanotubes have been generated on metallic substrates via anodization, which attracted significant scientific interest for a broad range of applications. These nano-tubular structures integrate highly controllable geometry at the nano-scale with fascinating chemical and biological properties. In this review, we first discussed mechanistic aspects of nanotube growth primarily on titanium (Ti) substrates by controlled anodization, a relatively inexpensive and scalable electrochemical process.

View Article and Find Full Text PDF

Crystalline Mg-Zn-Ca ternary alloys have recently attracted significant interest for biomedical implant applications due to their promising biocompatibility, bioactivity, biodegradability and mechanical properties. The objective of this study was to characterize as-cast Mg-xZn-0.5Ca (x=0.

View Article and Find Full Text PDF

The objective of this study was to investigate the adhesion and morphology of bone marrow derived stromal cells (BMSCs) on bulk titanium (Ti) substrates with precisely-patterned surfaces consisting of groove-based gratings with groove widths ranging from 50 micro m down to 0.5 micro m (500 nm). Although it is well known that certain surface patterning enhances osteoblast (bone-forming cell) functions, past studies on cell-pattern interactions reported in the literature have heavily relied on surface patterning on materials with limited clinical relevance for orthopedic applications, such as polymeric substrates.

View Article and Find Full Text PDF

A new biodegradable magnesium-zinc-strontium (Mg-Zn-Sr) alloy was developed and studied for medical implant applications. This first study investigated the alloy processing (casting, rolling, and heat treatment), microstructures, mechanical properties, and degradation properties in simulated body fluid (SBF). Aging treatment of the ZSr41 alloy at 175 °C for 8h improved the mechanical properties when compared to those of the as-cast alloy.

View Article and Find Full Text PDF

Implant longevity is desired for all bone replacements and fixatives. Titanium (Ti) implants fail due to lack of juxtaposed bone formation, resulting in implant loosening. Implant surface modifications have shown to affect the interactions between the implant and bone.

View Article and Find Full Text PDF

Magnesium-based alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When considered for medical applications, the degradation rate of these alloys must be tailored so that: (i) it does not exceed the rate at which the degradation products can be excreted from the body, and (ii) it is slow enough so that the load bearing properties of the implant are not jeopardized and do not conflict prior to and during synthesis of new tissue. Implant integration with surrounding cells and tissues and mechanical stability are critical aspects for clinical success.

View Article and Find Full Text PDF

Magnesium alloys have attracted great interest for medical applications due to their unique biodegradable capability and desirable mechanical properties. When designed for medical applications, these alloys must have suitable degradation properties, i.e.

View Article and Find Full Text PDF