Recent studies have implicated an N-terminal caspase-6 cleavage product of mutant huntingtin (htt) as an important mediator of toxicity in Huntington's disease (HD). To directly assess the consequences of such fragments on neurologic function, we produced transgenic mice that express a caspase-6 length N-terminal fragment of mutant htt (N586) with both normal (23Q) and disease (82Q) length glutamine repeats. In contrast to mice expressing N586-23Q, mice expressing N586-82Q accumulate large cytoplasmic inclusion bodies that can be visualized with antibodies to epitopes throughout the N586 protein.
View Article and Find Full Text PDFThe discovery of the gene mutation responsible for Huntington's disease (HD), huntingtin, in 1993 allowed for a better understanding of the pathology of and enabled the development of animal models. HD is caused by the expansion of a polyglutamine repeat region in the N-terminal of the huntingtin protein. Here we examine the behavioral, transcriptional, histopathological and anatomical characteristics of a knock-in HD mouse model with a 140 polyglutamine expansion in the huntingtin protein.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) gene transfer is being developed as a treatment for Parkinson's disease (PD). Due to the potential for side effects, external transgene regulation should enhance this strategy's safety profile. Here, we demonstrate dynamic control during long-term expression of GDNF using a recombinant adeno-associated virus (rAAV)-based bicistronic tetracycline (tet)-off construct.
View Article and Find Full Text PDFIntraventricular administration of glial cell line-derived neurotrophic factor (GDNF) in primate and humans to study Parkinson's disease (PD) has revealed the potential for GDNF to induce weight loss. Our previous data indicate that bilateral continuous hypothalamic GDNF overexpression via recombinant adeno-associated virus (rAAV) results in significant failure to gain weight in young rats and weight loss in aged rats. Based on these previous results, we hypothesized that because the nigrostriatal tract passes through the lateral hypothalamus, motor hyperactivity mediated by nigrostriatal dopamine (DA) may have been responsible for the previously observed effect on body weight.
View Article and Find Full Text PDF