Protein aggregation and particle formation have been observed when protein solutions contact hydrophobic interfaces, and it has been suggested that this undesirable phenomenon may be initiated by interfacial adsorption and subsequent gelation of the protein. The addition of surfactants, such as polysorbate 20, to protein formulations has been proposed as a way to reduce protein adsorption at silicone oil-water interfaces and mitigate the production of aggregates and particles. In an accelerated stability study, monoclonal antibody formulations containing varying concentrations of polysorbate 20 were incubated and agitated in pre-filled glass syringes (PFS), exposing the protein to silicone oil-water interfaces at the siliconized syringe walls, air-water interfaces, and agitation stress.
View Article and Find Full Text PDFHigh-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster.
View Article and Find Full Text PDFUsing high throughput single-molecule total internal reflection fluorescence microscopy (TIRFM), we have acquired molecular trajectories of bovine serum albumin (BSA) and hen egg white lysozyme during protein layer formation at the silicone oil-water interface. These trajectories were analyzed to determine the distribution of molecular diffusion coefficients, and for signatures of molecular crowding/caging, including subdiffusive motion and temporal anticorrelation of the instantaneous velocity vector. The evolution of these properties with aging time of the interface was compared with dynamic interfacial tension measurements.
View Article and Find Full Text PDF