Publications by authors named "Aaron Balog"

Starting from the dialkylaniline indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor lead 3 (IDO1 HeLa IC = 7.0 nM), an iterative process of synthesis and screening led to cyclized analog 21 (IDO1 HeLa IC = 3.6 nM) which maintained the high potency of 3 while addressing issues of lipophilicity, cytochrome P450 (CYP) inhibition, hERG (human potassium ion channel Kv11.

View Article and Find Full Text PDF

We report herein, the discovery of BMS-737 (compound 33) as a potent, non-steroidal, reversible small molecule inhibitor demonstrating 11-fold selectivity for CYP17 lyase over CYP17 hydroxylase, as well as a clean xenobiotic CYP profile for the treatment of castration-resistant prostate cancer (CRPC). Extensive SAR studies on the initial lead 1 at three different regions of the molecule resulted in the identification of BMS-737, which demonstrated a robust 83% lowering of testosterone without any significant perturbation of the mineralocorticoid and glucocorticoid levels in cynomologous monkeys in a 1-day PK/PD study.

View Article and Find Full Text PDF

BMS-986205 (Linrodostat) is a small molecule inhibitor of Indoleamine 2, 3 dioxygenase (IDO) that is currently being evaluated in clinical trials for the oral treatment of advanced cancer. Initially, there were concerns regarding possible toxicity following administration, since BMS-986205 undergoes metabolism to form 4-chloroaniline. However, it was later determined that the downstream metabolites of 4-chloroaniline might be a greater concern.

View Article and Find Full Text PDF

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism.

View Article and Find Full Text PDF

Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both potency and pharmacodynamic effect in a mouse xenograft model.

View Article and Find Full Text PDF

Tumors can exploit the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to create an immunosuppressive microenvironment. Activated IDO1 metabolizes tryptophan into immunosuppressive kynurenine, leading to suppressed effector T-cell (Teff) proliferation, allowing for tumor escape from host immune surveillance. IDO1 inhibition counteracts this immunosuppressive tumor microenvironment and may improve cancer outcomes, particularly when combined with other immunotherapies.

View Article and Find Full Text PDF

For cancer cells to survive and proliferate, they must escape normal immune destruction. One mechanism by which this is accomplished is through immune suppression effected by up-regulation of indoleamine 2,3-dioxygenase (IDO1), a heme enzyme that catalyzes the oxidation of tryptophan to -formylkynurenine. On deformylation, kynurenine and downstream metabolites suppress T cell function.

View Article and Find Full Text PDF

A novel series of o-phenylenediamine-based inhibitors of indoleamine 2,3-dioxygenase (IDO) has been identified. IDO is a heme-containing enzyme, overexpressed in the tumor microenvironment of many cancers, which can contribute to the suppression of the host immune system. Synthetic modifications to a previously described diarylether series resulted in an additional degree of molecular diversity which was exploited to afford compounds that demonstrated significant potency in the HeLa human cervical cancer IDO1 assay.

View Article and Find Full Text PDF

This letter describes the discovery, synthesis, SAR, and biological activity of [2.2.1]-bicyclic sultams as potent antagonists of the androgen receptor.

View Article and Find Full Text PDF

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation.

View Article and Find Full Text PDF

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide.

View Article and Find Full Text PDF

Structure-activity relationships in a series of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides identified highly potent inhibitors of γ-secretase mediated signaling of Notch1/2/3/4 receptors. On the basis of its robust in vivo efficacy at tolerated doses in Notch driven leukemia and solid tumor xenograft models, 12 (BMS-906024) was selected as a candidate for clinical evaluation.

View Article and Find Full Text PDF

This Letter describes synthesis, SAR, and biological activity of (2-oxo-1,4-benzodiazepin-3-yl)-succinamides as inhibitors of γ-secretase mediated signaling of Notch receptors. Optimization of this series led to the identification of BMS-871 (compound 30) which displayed robust in vivo efficacy in Notch-dependent leukemia and solid tumor xenograft models.

View Article and Find Full Text PDF

This article reports the design, synthesis, and evaluation of a novel class of molecules of intermediate size (approximately 7000 Da), which possess both the targeting and effector functions of antibodies. These compounds—called synthetic antibody mimics targeting prostate cancer (SyAM-Ps)—bind simultaneously to prostate-specific membrane antigen and Fc gamma receptor I, thus eliciting highly selective cancer cell phagocytosis. SyAMs have the potential to combine the advantages of both small-molecule and biologic therapies, and may address many drawbacks associated with available treatments for cancer and other diseases.

View Article and Find Full Text PDF

For the first time, [3α-(3) H] 17α-hydroxy pregnenolone (1) was synthesized through a multiple step sequence. The presence of [3β-(3) H] isomer in RP-HPLC purified product was identified by tritium NMR. The [3β-(3) H] isomer was then separated from [3α-(3) H] 17α-hydroxy pregnenolone with chiralPAK AD-H column.

View Article and Find Full Text PDF

Background: Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands.

View Article and Find Full Text PDF

Despite an excellent initial response to first-line hormonal treatment, most patients with metastatic prostate cancer will succumb to a hormone-refractory form of the disease. Because these tumors are still dependent on a functional androgen receptor (AR), there is a need to find novel and more potent antiandrogens. While searching for small molecules that bind to the AR and inhibit its transcriptional activity, BMS-641988 was discovered.

View Article and Find Full Text PDF

A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor.

View Article and Find Full Text PDF

A novel series of isoindoledione based compounds were identified as potent antagonists of the androgen receptor (AR). SAR around this series revealed dramatic differences in binding and function in mutant variants (MT) of the AR as compared to the wild type (WT) receptor. Optimization of the aniline portion revealed substitution patterns, which yielded potent antagonist activity against the WT AR as well as the MT AR found in the LNCaP and PCa2b human prostate tumor cell lines.

View Article and Find Full Text PDF

A novel series of isoindoledione based compounds were identified as potent antagonists of the androgen receptor (AR). Co-crystallization of members of this family of inhibitors was successfully accomplished with the T877A AR LBD. A working model of how this class of compounds functions to antagonize the AR was created.

View Article and Find Full Text PDF

A novel series of [2.2.1]-azahydantoins has been designed and synthesized in an enantiospecific manner.

View Article and Find Full Text PDF

A practical total synthesis of 26-(1,3-dioxolanyl)-12,13-desoxyepothilone B (26-dioxolanyl dEpoB) was accomplished in a highly convergent manner. A novel sequence was developed to produce the vinyl iodide segment 17 in high enantiomeric excess, which was used in a key B-alkyl Suzuki merger. Subsequently, a Yamaguchi macrocyclization formed the core lactone, while a selective oxidation and a late stage Noyori acetalization incorporated the dioxolane functionality.

View Article and Find Full Text PDF