Hair cells are mechanosensory cells that mediate the sense of hearing. These cells do not regenerate after damage in humans, but they are naturally replenished in non-mammalian vertebrates such as zebrafish. The zebrafish lateral line system is a useful model for characterizing sensory hair cell regeneration.
View Article and Find Full Text PDFGABA is a robust regulator of both developing and mature neural networks. It exerts many of its effects through GABAA receptors, which are heteropentamers assembled from a large array of subunits encoded by distinct genes. In mammals, there are 19 different GABAA subunit types, which are divided into the α, β, γ, δ, ε, π, θ and ρ subfamilies.
View Article and Find Full Text PDFIn the vertebrate blastula and gastrula the Nodal pathway is essential for formation of the primary germ layers and the organizer. Nodal autoregulatory feedback potentiates signaling activity, but mechanisms limiting embryonic Nodal ligand transcription are poorly understood. Here we describe a transcriptional switch mechanism mediated by FoxH1, the principle effector of Nodal autoregulation.
View Article and Find Full Text PDFHearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life.
View Article and Find Full Text PDFFoxD3 is a forkhead-related transcriptional regulator that is essential for multiple developmental processes in the vertebrate embryo, including neural crest development and maintenance of mammalian stem cell lineages. Recent results demonstrate a requirement for FoxD3 in Xenopus mesodermal development. In the gastrula, FoxD3 functions as a transcriptional repressor in the Spemann organizer to maintain the expression of Nodal-related members of the transforming growth factor-beta superfamily that induce dorsal mesoderm formation.
View Article and Find Full Text PDFInduction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and differentiation of axial tissues.
View Article and Find Full Text PDF