The subterranean blind mole rat, , has evolved significantly over 47 million years to thrive in its underground habitat. A key enzyme in this adaptation is heparanase, which degrades heparan sulfate (HS) in the extracellular matrix (ECM), facilitating angiogenesis and releasing growth factors for endothelial cells. heparanase has various splice variants influencing tumor growth and metastasis differently.
View Article and Find Full Text PDFSubterranean blind mole rat, , has developed strategies to withstand cancer by maintaining genome stability and suppressing the inflammatory response. cells undergo senescence without the acquisition of senescence-associated secretory phenotype (SASP) in its canonical form, namely, it lacks the main inflammatory mediators. Since senescence can propagate through paracrine factors, we hypothesize that conditioned medium (CM) from senescent fibroblasts can transmit the senescent phenotype to cancer cells without inducing an inflammatory response, thereby suppressing malignant behavior.
View Article and Find Full Text PDFHeparanase is an endoglycosidase that degrades heparan sulfate side chains of heparan sulfate-proteoglycans. It liberates heparan sulfate-bound growth factors and thereby promotes blood vessel sprouting and angiogenesis. The subterranean blind mole rat, Spalax, is a wild mammal that lives most of its life in underground tunnels where it experiences sharp fluctuations in oxygen and carbon dioxide levels.
View Article and Find Full Text PDFBackground: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified.
View Article and Find Full Text PDFAdipose-derived stem cells (ADSCs) are recruited by cancer cells from the adjacent tissue, and they become an integral part of the tumor microenvironment. Here, we report that ADSCs from the long-living, tumor-resistant blind mole rat, Spalax, have a low ability to migrate toward cancer cells compared with cells from its Rattus counterpart. Tracking 5-ethynyl-2'-deoxyuridine (EdU)-labeled ADSCs, introduced to tumor-bearing nude mice, toward the xenografts, we found that rat ADSCs intensively migrated and penetrated the tumors, whereas only a few Spalax ADSCs reached the tumors.
View Article and Find Full Text PDFDevelopmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes.
View Article and Find Full Text PDFThe blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue.
View Article and Find Full Text PDFThe subterranean blind mole rat, Spalax, experiences acute hypoxia-reoxygenation cycles in its natural subterranean habitat. At the cellular level, these conditions are known to promote genomic instability, which underlies both cancer and aging. However, Spalax is a long-lived animal and is resistant to both spontaneous and induced cancers.
View Article and Find Full Text PDFBackground: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage.
View Article and Find Full Text PDFThe blind mole rat, Spalax ehrenbergi, can, despite severely degenerated eyes covered by fur, entrain to the daily light/dark cycle and adapt to seasonal changes due to an intact circadian timing system. The present study demonstrates that the Spalax retina contains a photoreceptor layer, an outer nuclear layer (ONL), an outer plexiform layer (OPL), an inner nuclear layer (INL), an inner plexiform layer (IPL), and a ganglion cell layer (GCL). By immunohistochemistry, the number of melanopsin (mRGCs) and non-melanopsin bearing retinal ganglion cells was analyzed in detail.
View Article and Find Full Text PDFThe Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions.
View Article and Find Full Text PDFThe blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors.
View Article and Find Full Text PDFThe Israeli blind subterranean mole rat (Spalax ehrenbergi superspecies) lives in sealed underground burrows under extreme, hypoxic conditions. The four Israeli Spalax allospecies have adapted to different climates, the cool-humid (Spalax galili, 2 n = 52 chromosomes), semihumid (S. golani, 2 n = 54) north regions, warm-humid (S.
View Article and Find Full Text PDFBackground: Subterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity.
View Article and Find Full Text PDFThe tumor suppressor gene p53 induces growth arrest and/or apoptosis in response to DNA damage/hypoxia. Inactivation of p53 confers a selective advantage to tumor cells under a hypoxic microenvironment during tumor progression. The subterranean blind mole rat, Spalax, spends its life underground at low-oxygen tensions, hence developing a wide range of respiratory/molecular adaptations to hypoxic stress, including critical changes in p53 structure and signaling pathway.
View Article and Find Full Text PDFBackground: The development of complex responses to hypoxia has played a key role in the evolution of mammals, as inadequate response to this condition is frequently associated with cardiovascular diseases, developmental disorders, and cancers. Though numerous studies have used mice and rats in order to explore mechanisms that contribute to hypoxia tolerance, these studies are limited due to the high sensitivity of most rodents to severe hypoxia. The blind subterranean mole rat Spalax is a hypoxia tolerant rodent, which exhibits unique longevity and therefore has invaluable potential in hypoxia and cancer research.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2012
Oxygen-induced regulation of Na,K-ATPase was studied in rat myocardium. In rat heart, Na,K-ATPase responded to hypoxia with a dose-dependent inhibition in hydrolytic activity. Inhibition of Na,K-ATPase in hypoxic rat heart was associated with decrease in nitric oxide (NO) production and progressive oxidative stress.
View Article and Find Full Text PDFVertebrate brains are sensitive to oxygen depletion, which may lead to cell death. Hypoxia sensitivity originates from the high intrinsic rate of ATP consumption of brain tissue, accompanied by the release of glutamate, leading to the opening of ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA) receptors (NMDARs). The relative expression levels of the four NMDAR-2 (NR2) subunits change during mammalian development with higher levels of units NR2B and NR2D observed during early development and correlated with hypoxic tolerance during embryonic and neonatal stages of development.
View Article and Find Full Text PDFLack of oxygen is life threatening for most mammals. It is therefore of biomedical interest to investigate the adaptive mechanisms which enable mammalian species to tolerate extremely hypoxic conditions. The subterranean mole rat Spalax survives substantially longer periods of hypoxia than the laboratory rat.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
April 2012
The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and then enzymatically reduced by the methionine sulfoxide reductase (Msr) system. In the current study we have isolated the cDNA sequences of the Spalax Msr genes as well as 23 additional selenoproteins and monitored the activities of Msr enzymes in liver and brain of rat (Rattus norvegicus), Spalax galili, and Spalax judaei under normoxia, hypoxia, and hyperoxia.
View Article and Find Full Text PDFThe blind subterranean mole rat (Spalax ehrenbergi superspecies) is a model animal for survival under extreme environments due to its ability to live in underground habitats under severe hypoxic stress and darkness. Here we report the transcriptome sequencing of Spalax galili, a chromosomal type of S. ehrenbergi.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
The subterranean mole rat Spalax is an excellent model for studying adaptation of a mammal toward chronic environmental hypoxia. Neuroglobin (Ngb) and cytoglobin (Cygb) are O(2)-binding respiratory proteins and thus candidates for being involved in molecular hypoxia adaptations of Spalax. Ngb is expressed primarily in vertebrate nerves, whereas Cygb is found in extracellular matrix-producing cells and in some neurons.
View Article and Find Full Text PDFThe tumor suppressor gene, p53, in response to DNA damage/hypoxia, induces growth arrest and/or apoptosis. Inactivation of p53, by mutations and/or overexpression of the mdm2 gene, confers a selective advantage to tumor cells under hypoxic microenvironment during tumor progression. The mole rat, Spalax, spends its life underground at low-oxygen tensions and hence has developed a wide range of respiratory/molecular adaptations to hypoxic stress.
View Article and Find Full Text PDFThe muscle ankyrin repeat proteins (MARPs), also known as muscle stretch proteins, are members of a conserved family of genes known to be induced under stress conditions. The three primary members, cardiac ankyrin repeat protein (CARP), Ankyrin Repeat Domain 2 (ARPP), and diabetes-related ankyrin repeat protein (DARP) are expressed in cardiac and skeletal muscle, binding to the giant protein titin. In addition, both CARP and ARPP are proposed to have regulatory functions, shuttling to the nucleus and serving as a liaison between mechanical stress and the transcriptional response.
View Article and Find Full Text PDF