Repetitive, long-term inhalation of radioactive radon gas is one of the leading causes of lung cancer, with exposure differences being a function of geographic location, built environment, personal demographics, activity patterns, and decision-making. Here, we examine radon exposure disparities across the urban-to-rural landscape, based on 42,051 Canadian residential properties in 2034 distinct communities. People living in rural, lower population density communities experience as much as 31.
View Article and Find Full Text PDFBackground: Alpha (α)-radiation is a ubiquitous environmental agent with epigenotoxic effects. Human exposure to α-radiation at potentially harmful levels can occur repetitively over the long term via inhalation of naturally occurring radon gas that accumulates in enclosed spaces, or as a result of a single exposure from a nuclear accident. Alterations in epigenetic DNA methylation (DNAm) have been implicated in normal aging and cancer pathogenesis.
View Article and Find Full Text PDFThe COVID-19 pandemic has produced widespread behaviour changes that shifted how people split their time between different environments, altering health risks. Here, we report an update of North American activity patterns before and after pandemic onset, and implications to radioactive radon gas exposure, a leading cause of lung cancer. We surveyed 4009 Canadian households home to people of varied age, gender, employment, community, and income.
View Article and Find Full Text PDFExposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1-2 helical turns of one another.
View Article and Find Full Text PDFCranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this.
View Article and Find Full Text PDFRadioactive radon gas inhalation is a major cause of lung cancer worldwide and is a consequence of the built environment. The average radon level of properties built in a given period (their 'innate radon risk') varies over time and by region, although the underlying reasons for these differences are unclear. To investigate this, we analyzed long term radon tests and buildings from 25,489 Canadian to 38,596 Swedish residential properties constructed after 1945.
View Article and Find Full Text PDFRadioactive radon inhalation is a leading cause of lung cancer and underlies an ongoing public health crisis. Radon exposure prevention strategies typically begin by informing populations about health effects, and their initial efficacy is measured by how well and how fast information convinces individuals to test properties. This communication process is rarely individualized, and there is little understanding if messages impact diverse demographics equally.
View Article and Find Full Text PDFResidential buildings can concentrate radioactive radon gas, exposing occupants to particle radiation that increases lung cancer risk. This has worsened over time in North America, with newer residences containing greater radon. Using data from 18,971 Canadian households, we calculated annual particle radiation dose rates due to long term residential radon exposure, and examined this as a function of occupant demographics.
View Article and Find Full Text PDFIonizing radiation (IR) is environmentally prevalent and, depending on dose and linear energy transfer (LET), can elicit serious health effects by damaging DNA. Relative to low LET photon radiation (X-rays, gamma rays), higher LET particle radiation produces more disease causing, complex DNA damage that is substantially more challenging to resolve quickly or accurately. Despite the majority of human lifetime IR exposure involving long-term, repetitive, low doses of high LET alpha particles (e.
View Article and Find Full Text PDFHuman-made buildings can artificially concentrate radioactive radon gas of geologic origin, exposing occupants to harmful alpha particle radiation emissions that damage DNA and increase lung cancer risk. We examined how North American residential radon exposure varies by modern environmental design, occupant behaviour and season. 11,727 residential buildings were radon-tested using multiple approaches coupled to geologic, geographic, architectural, seasonal and behavioural data with quality controls.
View Article and Find Full Text PDFCell survival after oxidative DNA damage requires signaling, repair and transcriptional events often enabled by nucleosome displacement, exchange or removal by chromatin remodeling enzymes. Here, we show that Chromodomain Helicase DNA-binding protein 6 (CHD6), distinct to other CHD enzymes, is stabilized during oxidative stress via reduced degradation. CHD6 relocates rapidly to DNA damage in a manner dependent upon oxidative lesions and a conserved N-terminal poly(ADP-ribose)-dependent recruitment motif, with later retention requiring the double chromodomain and central core.
View Article and Find Full Text PDFMalignant mesothelioma is an aggressive and lethal asbestos-related disease. Diagnosis of malignant mesothelioma is particularly challenging and is further complicated by the lack of disease subtype-specific markers. As a result, it is especially difficult to distinguish malignant mesothelioma from benign reactive mesothelial proliferations or reactive fibrosis.
View Article and Find Full Text PDFQuantification in proteomics largely relies on the incorporation of stable isotopes, with protocols that either introduce the label through metabolic incorporation or chemical tagging. Most methods rely on the use of trypsin and/or LysC to generate labeled peptides. Although alternative proteases can enhance proteome coverage, generic quantitative methods that port over to such enzymes are lacking.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2017
Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
DNA damaging agents such as ionizing irradiation induce lesions in the DNA such as double strand breaks (DSBs). Depending on cell type, 10-25% of these DSBs are induced in heterochromatin. Heterochromatic DSBs are resolved with slow kinetics (compared to DSBs in euchromatin) and require ATM activity for repair.
View Article and Find Full Text PDFBackground: The inhalation of naturally occurring radon (222Rn) gas from indoor air exposes lung tissue to α-particle bombardment, a highly mutagenic form of ionizing radiation that damages DNA and increases the lifetime risk of lung cancer. We analyzed household radon concentrations and risk factors in southern Alberta, including Calgary, the third-largest Canadian metropolis.
Methods: A total of 2382 residential homes (2018 in Calgary and 364 in surrounding townships) from an area encompassing 82% of the southern Alberta population were tested for radon, per Health Canada guidelines, for at least 90 days (median 103 d) between 2013 and 2016.
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs.
View Article and Find Full Text PDFHeterochromatin is a barrier to DNA repair that correlates strongly with elevated somatic mutation in cancer. CHD class II nucleosome remodeling activity (specifically CHD3.1) retained by KAP-1 increases heterochromatin compaction and impedes DNA double-strand break (DSB) repair requiring Artemis.
View Article and Find Full Text PDFCellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks.
View Article and Find Full Text PDFHigh linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways.
View Article and Find Full Text PDFAlthough DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR.
View Article and Find Full Text PDFThe protein and DNA complex known as chromatin is a dynamic structure, adapting to alter the spatial arrangement of genetic information within the nucleus to meet the ever changing demands of life. Following decades of research, a dizzying array of regulatory factors is now known to control the architecture of chromatin at nearly every level. Amongst these, ATP-dependent chromatin remodelling enzymes play a key role, required for the establishment, maintenance and re-organization of chromatin through their ability to adjust the contact points between DNA and histones, the spacing between individual nucleosomes and the over-arching chromatin superstructure.
View Article and Find Full Text PDFA DNA double-strand break (DSB) has long been recognized as a severe cellular lesion, potentially representing an initiating event for carcinogenesis or cell death. The evolution of DSB repair pathways as well as additional processes, such as cell cycle checkpoint arrest, to minimize the cellular impact of DSB formation was, therefore, not surprising. However, the depth and complexity of the DNA damage responses being revealed by current studies were unexpected.
View Article and Find Full Text PDF