Recent studies indicate that astrocytes show heterogeneity in morphology and physiological function. They integrate synaptic signals and release calcium in reaction to active neurons. These calcium signals are not yet fully understood as they are highly dependent on the cell's morphology, which can vary across and within brain regions.
View Article and Find Full Text PDFPurpose: The importance of mechanical forces and microenvironment in guiding cellular behavior has been widely accepted. Together with the extracellular matrix (ECM), epithelial cells form a highly connected mechanical system subjected to various mechanical cues from their environment, such as ECM stiffness, and tensile and compressive forces. ECM stiffness has been linked to many pathologies, including tumor formation.
View Article and Find Full Text PDFTight junctions are dynamic structures that are crucial in establishing the diffusion and electrical barrier of epithelial monolayers. Dysfunctions in the tight junctions can impede this barrier function and lead to many pathological conditions. Unfortunately, detailed understanding of the non-specific permeation pathway through the tight junctions, the so-called leak pathway, is lacking.
View Article and Find Full Text PDFPurpose: The purpose of this study is to develop a computational model of the physical barrier function of the outer blood-retinal barrier (BRB), which is vital for normal retinal function. To our best knowledge no comprehensive models of BRB has been reported.
Methods: The model construction is based on the three-layered structure of the BRB: retinal pigment epithelium (RPE), Bruch's membrane and choriocapillaris endothelium.