Publications by authors named "Aapo Hyvarinen"

Molecules are essential building blocks of life and their different conformations (i.e., shapes) crucially determine the functional role that they play in living organisms.

View Article and Find Full Text PDF

Molecules are essential building blocks of life and their different conformations (i.e., shapes) crucially determine the functional role that they play in living organisms.

View Article and Find Full Text PDF

Introduction: There has been a growing interest in studying brain activity under naturalistic conditions. However, the relationship between individual differences in ongoing brain activity and psychological characteristics is not well understood. We investigated this connection, focusing on the association between oscillatory activity in the brain and individually characteristic dispositional traits.

View Article and Find Full Text PDF

A central problem in unsupervised deep learning is how to find useful representations of high-dimensional data, sometimes called "disentanglement." Most approaches are heuristic and lack a proper theoretical foundation. In linear representation learning, independent component analysis (ICA) has been successful in many applications areas, and it is principled, i.

View Article and Find Full Text PDF

Resting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. However, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting-state MEG data.

View Article and Find Full Text PDF

Visual focal attention is both fast and spatially localized, making it challenging to investigate using human neuroimaging paradigms. Here, we used a new multivariate multifocal mapping method with magnetoencephalography (MEG) to study how focal attention in visual space changes stimulus-evoked responses across the visual field. The observer's task was to detect a color change in the target location, or at the central fixation.

View Article and Find Full Text PDF

Summarizing large-scale directed graphs into small-scale representations is a useful but less-studied problem setting. Conventional clustering approaches, based on Min-Cut-style criteria, compress both the vertices and edges of the graph into the communities, which lead to a loss of directed edge information. On the other hand, compressing the vertices while preserving the directed-edge information provides a way to learn the small-scale representation of a directed graph.

View Article and Find Full Text PDF

Social and pragmatic difficulties in autism spectrum disorder (ASD) are widely recognized, although their underlying neural level processing is not well understood. The aim of this study was to examine the activity of the brain network components linked to social and pragmatic understanding in order to reveal whether complex socio-pragmatic events evoke differences in brain activity between the ASD and control groups. Nineteen young adults (mean age 23.

View Article and Find Full Text PDF

Supervised learning paradigms are often limited by the amount of labeled data that is available. This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG), where labeling can be costly in terms of specialized expertise and human processing time. Consequently, deep learning architectures designed to learn on EEG data have yielded relatively shallow models and performances at best similar to those of traditional feature-based approaches.

View Article and Find Full Text PDF

Neuroimaging-driven prediction of brain age, defined as the predicted biological age of a subject using only brain imaging data, is an exciting avenue of research. In this work we seek to build models of brain age based on functional connectivity while prioritizing model interpretability and understanding. This way, the models serve to both provide accurate estimates of brain age as well as allow us to investigate changes in functional connectivity which occur during the ageing process.

View Article and Find Full Text PDF

Accumulating evidence from whole brain functional magnetic resonance imaging (fMRI) suggests that the human brain at rest is functionally organized in a spatially and temporally constrained manner. However, because of their complexity, the fundamental mechanisms underlying time-varying functional networks are still not well understood. Here, we develop a novel nonlinear feature extraction framework called local space-contrastive learning (LSCL), which extracts distinctive nonlinear temporal structure hidden in time series, by training a deep temporal convolutional neural network in an unsupervised, data-driven manner.

View Article and Find Full Text PDF

Natural speech builds on contextual relations that can prompt predictions of upcoming utterances. To study the neural underpinnings of such predictive processing we asked 10 healthy adults to listen to a 1-h-long audiobook while their magnetoencephalographic (MEG) brain activity was recorded. We correlated the MEG signals with acoustic speech envelope, as well as with estimates of Bayesian word probability with and without the contextual word sequence (N-gram and Unigram, respectively), with a focus on time-lags.

View Article and Find Full Text PDF

We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions.

View Article and Find Full Text PDF

The statistical dependencies that independent component analysis (ICA) cannot remove often provide rich information beyond the linear independent components. It would thus be very useful to estimate the dependency structure from data. While such models have been proposed, they have usually concentrated on higher-order correlations such as energy (square) correlations.

View Article and Find Full Text PDF

Experimental studies have revealed evidence of both parts-based and holistic representations of objects and faces in the primate visual system. However, it is still a mystery how such seemingly contradictory types of processing can coexist within a single system. Here, we propose a novel theory called mixture of sparse coding models, inspired by the formation of category-specific subregions in the inferotemporal (IT) cortex.

View Article and Find Full Text PDF

Characterizing the variability of resting-state functional brain connectivity across subjects and/or over time has recently attracted much attention. Principal component analysis (PCA) serves as a fundamental statistical technique for such analyses. However, performing PCA on high-dimensional connectivity matrices yields complicated "eigenconnectivity" patterns, for which systematic interpretation is a challenging issue.

View Article and Find Full Text PDF

We studied how learning changes the processing of a low-level Gabor stimulus, using a classification-image method (psychophysical reverse correlation) and a task where observers discriminated between slight differences in the phase (relative alignment) of a target Gabor in visual noise. The method estimates the internal "template" that describes how the visual system weights the input information for decisions. One popular idea has been that learning makes the template more like an ideal Bayesian weighting; however, the evidence has been indirect.

View Article and Find Full Text PDF

In visual modeling, invariance properties of visual cells are often explained by a pooling mechanism, in which outputs of neurons with similar selectivities to some stimulus parameters are integrated so as to gain some extent of invariance to other parameters. For example, the classical energy model of phase-invariant V1 complex cells pools model simple cells preferring similar orientation but different phases. Prior studies, such as independent subspace analysis, have shown that phase-invariance properties of V1 complex cells can be learned from spatial statistics of natural inputs.

View Article and Find Full Text PDF

In many multivariate time series, the correlation structure is nonstationary, that is, it changes over time. The correlation structure may also change as a function of other cofactors, for example, the identity of the subject in biomedical data. A fundamental approach for the analysis of such data is to estimate the correlation structure (connectivities) separately in short time windows or for different subjects and use existing machine learning methods, such as principal component analysis (PCA), to summarize or visualize the changes in connectivity.

View Article and Find Full Text PDF

Previous theoretical and experimental studies have demonstrated tight relationships between natural image statistics and neural representations in V1. In particular, receptive field properties similar to simple and complex cells have been shown to be inferable from sparse coding of natural images. However, whether such a relationship exists in higher areas has not been clarified.

View Article and Find Full Text PDF

Classifying multivariate electromyography (EMG) data is an important problem in prosthesis control as well as in neurophysiological studies and diagnosis. With modern high-density EMG sensor technology, it is possible to capture the rich spectrospatial structure of the myoelectric activity. We hypothesize that multi-way machine learning methods can efficiently utilize this structure in classification as well as reveal interesting patterns in it.

View Article and Find Full Text PDF

Unsupervised analysis of the dynamics (nonstationarity) of functional brain connectivity during rest has recently received a lot of attention in the neuroimaging and neuroengineering communities. Most studies have used functional magnetic resonance imaging, but electroencephalography (EEG) and magnetoencephalography (MEG) also hold great promise for analyzing nonstationary functional connectivity with high temporal resolution. Previous EEG/MEG analyses divided the problem into two consecutive stages: the separation of neural sources and then the connectivity analysis of the separated sources.

View Article and Find Full Text PDF

Analysis of the dynamics (non-stationarity) of functional connectivity patterns has recently received a lot of attention in the neuroimaging community. Most analysis has been using functional magnetic resonance imaging (fMRI), partly due to the inherent technical complexity of the electro- or magnetoencephalography (EEG/MEG) signals, but EEG/MEG holds great promise in analyzing fast changes in connectivity. Here, we propose a method for dynamic connectivity analysis of EEG/MEG, combining blind source separation with dynamic connectivity analysis in a single probabilistic model.

View Article and Find Full Text PDF

Radial frequency (RF) patterns are circular contours where the radius is modulated sinusoidally. These stimuli can represent a wide range of common shapes and have been popular for investigating human shape perception. Theories postulate a multistage model where a global contour integration mechanism integrates the outputs of local curvature-sensitive mechanisms.

View Article and Find Full Text PDF

Increasingly-large datasets (for example, the resting-state fMRI data from the Human Connectome Project) are demanding analyses that are problematic because of the sheer scale of the aggregate data. We present two approaches for applying group-level PCA; both give a close approximation to the output of PCA applied to full concatenation of all individual datasets, while having very low memory requirements regardless of the number of datasets being combined. Across a range of realistic simulations, we find that in most situations, both methods are more accurate than current popular approaches for analysis of multi-subject resting-state fMRI studies.

View Article and Find Full Text PDF