Speedy and on-time detection of coronavirus disease 2019 (COVID-19) is of high importance to control the pandemic effectively and stop its disastrous consequences. A widely available, reliable, label-free, and rapid test that can recognize tiny amounts of specific biomarkers might be the solution. Nanobiosensors are one of the most attractive candidates for this purpose.
View Article and Find Full Text PDFMicro-supercapacitors (MSCs) are promising power solution facilities for miniaturized portable electronic devices. Microfabrication of on-chip MSC with high specific capacitance and high energy density is still a great challenge. Herein, we report a high-performance MnO/polypyrrole (PPy) microelectrode based MSC (MnO/PPy-MSC) by modern micromachining technology.
View Article and Find Full Text PDFInspired by the Archimedean spiral, a new integrated design of micropseudocapacitors is presented. The fabricated micropseudocapacitors deliver an energy density of 34.9 mW h cm(-3) and a power density of 193.
View Article and Find Full Text PDFDevelopment of pseudocapacitor electrode materials with high comprehensive electrochemical performance, such as high capacitance, superior reversibility, excellent stability, and good rate capability at the high mass loading level, still is a tremendous challenge. To our knowledge, few works could successfully achieve the above comprehensive electrochemical performance simultaneously. Here we design and synthesize one interwoven three-dimensional (3D) architecture of cobalt oxide nanobrush-graphene@Ni(x)Co(2x)(OH)(6x) (CNG@NCH) electrode with high comprehensive electrochemical performance: high specific capacitance (2550 F g(-1) and 5.
View Article and Find Full Text PDFLithium-ion batteries have attracted enormous attention for large-scale and sustainable energy storage applications. Here we present a design of hierarchical Li3V2(PO4)3/C mesoporous nanowires via one-pot synthesis process. The mesoporous structure is directly in situ carbonized from the surfactants (CTAB and oxalic acid) along with the crystallization of Li3V2(PO4)3 without using any hard templates.
View Article and Find Full Text PDFDevelopment of supercapacitors with high-energy density and high-power density is a tremendous challenge. Although the use of conductive carbon materials is promising, other methods are needed to reach high cyclability, which cannot be achieved by fully utilizing the surface-oxygen redox reactions of carbon. Here we introduce an effective strategy that utilizes Cu(2+) reduction with carbon-oxygen surface groups of the binder-free electrode in a new redox-active electrolyte.
View Article and Find Full Text PDFPseudocapacitors have demonstrated an ability to deliver high energy and power densities. The main limitation is their poor cyclability and for this reason the architectural design of electrode materials has attracted considerable attention. Here we report the synthesis of hierarchical nanostructured material by growing Co(OH)2 nanoflakes onto MoO2 thin film.
View Article and Find Full Text PDFRational assembly of unique complex nanostructures is one of the facile techniques to improve the electrochemical performance of electrode materials. Here, a substrate-assisted hydrothermal method was designed and applied in synthesizing moundlily like radial β-AgVO(3) nanowire clusters. Gravitation and F(-) ions have been demonstrated to play important roles in the growth of β-AgVO(3) nanowires (NWs) on substrates.
View Article and Find Full Text PDF