Publications by authors named "Aamer Aziz"

Numerous works of literature have assessed the use of ultrasound to detect carpal tunnel syndrome, suggesting various techniques and cut-off values. Currently, an effective parameter and cut-off value are still debated. The aim of this review is to determine if these parameters have sufficient rigour to allow their use in clinical practice.

View Article and Find Full Text PDF

Purpose: In Australia, radiology services are provided as full 24-hour services, 24-hour urgent out-of-hours (on-call) services, and business hours-only service. The primary purpose of this study was to determine whether out-of-hours (11 PM-7 AM) chest x-ray (CXR) referrals are consistent with out-of-hours service expectations associated with the cost and inconvenience of calling staff in from home. A secondary objective was to determine whether the mobile chest plain film examinations are consistent with expectations of a patient's increased degree of infirmary.

View Article and Find Full Text PDF

An algorithm to determine the human brain (gray matter (GM) and white matter (WM)) from computed tomography (CT) head volumes with large slice thickness is proposed based on thresholding and brain mask propagation. Firstly, a 2D reference image is chosen to represent the intensity characteristics of the original 3D data set. Secondly, the region of interest of the reference image is determined as the space enclosed by the skull.

View Article and Find Full Text PDF

A theoretically simple and computationally efficient method to extract the midsagittal plane (MSP) from volumetric neuroimages is presented. The method works in two stages (coarse and fine) and is based on calculation of the Kullback and Leibler's (KL) measure, which characterizes the difference between two distributions. Slices along the sagittal direction are analyzed with respect to a reference slice to determine the coarse MSP.

View Article and Find Full Text PDF

We present a virtual reality simulator to realize interventional radiology (IR) procedures remotely. The simulator contains two subsystems: one at the local site and the other at the remote site. At the local site, the interventional radiologist interacts with a three-dimensional (3-D) vascular model extracted from the patient's data and inserts IR devices through the Motion Tracking Box (MTB), which converts physical motion (translation and rotation) of IR devices into digital signal.

View Article and Find Full Text PDF

We introduce and validate the Fast Talairach Transformation (FTT). FTT is a rapid version of the Talairach transformation (TT) with the modified Talairach landmarks. Landmark identification is fully automatic and done in 3 steps: calculation of midsagittal plane, computing of anterior commissure (AC) and posterior commissure (PC) landmarks, and calculation of cortical landmarks.

View Article and Find Full Text PDF

Rationale And Objectives: The human brain demonstrates approximate bilateral symmetry of anatomy, function, neurochemical activity, and electrophysiology. This symmetry reflected in radiological images may be affected by pathology. Hence quantitative analysis of brain symmetry may enable the normal and pathological brain discrimination.

View Article and Find Full Text PDF

Rationale And Objective: Accurate identification of the anterior commissure (AC) and posterior commissure (PC) is critical in neuroradiology, functional neurosurgery, human brain mapping, and neuroscience research. Moreover, major stereotactic brain atlases are based on the AC and PC. Our goal is to provide an algorithm for a rapid, robust, accurate and automatic identification of AC and PC.

View Article and Find Full Text PDF

A new method has been developed for multimedia enhancement of electronic teaching files created by using the standard protocols and formats offered by the Medical Imaging Resource Center (MIRC) project of the Radiological Society of North America. The typical MIRC electronic teaching file consists of static pages only; with the new method, audio and visual content may be added to the MIRC electronic teaching file so that the entire image interpretation process can be recorded for teaching purposes. With an efficient system for encoding the audiovisual record of on-screen manipulation of radiologic images, the multimedia teaching files generated are small enough to be transmitted via the Internet with acceptable resolution.

View Article and Find Full Text PDF

We propose an anatomy-based approach for an efficient construction of a three-dimensional human normal cerebral arterial model from segmented and skeletonized angiographic data. The centerline-based model is used for an accurate angiographic data representation. A vascular tree is represented by tubular segments and bifurcations whose construction takes into account vascular anatomy.

View Article and Find Full Text PDF

Of the existing atlases of the brain anatomy and cerebrovasculature, none integrates the anatomy and vasculature by providing for direct manipulation of three-dimensional (3D) cerebral models. An atlas-based application was developed in four steps: (a) construction of 3D anatomic models, (b) construction of 3D vascular models, (c) interactive spatial coregistration of the anatomic and vascular models, and (d) development of functionality and a user interface for the application. Three-dimensional anatomic models were imported from an electronic brain atlas database derived from classic print atlases.

View Article and Find Full Text PDF

This work presents an efficient and automated method to extract the human cerebral ventricular system from MRI driven by anatomic knowledge. The ventricular system is divided into six three-dimensional regions; six ROIs are defined based on the anatomy and literature studies regarding variability of the cerebral ventricular system. The distribution histogram of radiological properties is calculated in each ROI, and the intensity thresholds for extracting each region are automatically determined.

View Article and Find Full Text PDF

Rationale And Objectives: Pulmonary interlobar fissures are important landmarks for proper identification of normal pulmonary anatomy and evaluation of disease. The purpose of this study was to define the radiologic anatomy of the pulmonary fissures using high resolution computed tomography (HRCT) in a large population.

Methods: HRCT of the lungs from aortic arch to diaphragm was performed in 622 patients, with a slice thickness of 1 mm and slice interval of 10 mm.

View Article and Find Full Text PDF

A knowledge-driven algorithm for a rapid, robust, accurate, and automatic extraction of the human cerebral ventricular system from MR neuroimages is proposed. Its novelty is in combination of neuroanatomy, radiological properties, and variability of the ventricular system with image processing techniques. The ventricular system is divided into six 3D regions: bodies and inferior horns of the lateral ventricles, third ventricle, and fourth ventricle.

View Article and Find Full Text PDF