Background: Subsurface microorganisms contribute to important ecosystem services, yet little is known about how the composition of these communities is affected by small scale heterogeneity such as in preferential flow paths including biopores and fractures. This study aimed to provide a more complete characterization of microbial communities from preferential flow paths and matrix sediments of a clayey till to a depth of 400 cm by using 16S rRNA gene and fungal ITS2 amplicon sequencing of environmental DNA. Moreover, shotgun metagenomics was applied to samples from fractures located 150 cm below ground surface (bgs) to investigate the bacterial genomic adaptations resulting from fluctuating exposure to nutrients, oxygen and water.
View Article and Find Full Text PDFGlobally, food production for an ever-growing population is a well-known threat to the environment due to losses of excess reactive nitrogen (N) from agriculture. Since the 1980s, many countries of the Global North, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulation and introduction of national agricultural one-size-fits-all mitigation measures. Despite this success, further reduction of the N load is required to meet the EU water directives demands, and implementation of additional targeted N regulation of agriculture has scientifically and politically been found to be a way forward.
View Article and Find Full Text PDFContamination of rivers by nitrate and pesticides poses a risk for aquatic ecosystems in lowland catchments that are often intensively used for agriculture. Here, the hyporheic zone, the streambed underneath the stream, plays a vital role due to its efficient self-purification capacity. The present study aims to evaluate the denitrification and transformation potential of 14 pesticides and three transformation products in the hyporheic sediment from a lowland stream with a high N load and by comparing an agricultural straightened section to a natural meandering part of the stream influenced by different groundwater discharges.
View Article and Find Full Text PDFFrequent occurrence of trace organic contaminants in aquatic environments, such as sulfonamide antibiotics in rivers receiving reclaimed water, is concerning. Natural attenuation by soil and sediment is increasingly relied upon. In the case of riverbank filtration for water purification, the reliability of antibiotic attenuation has been called into question due to incomplete understanding of their degradation processes.
View Article and Find Full Text PDFA key aspect of protecting aquatic ecosystems from agricultural nitrogen (N) is to locate (i) farmlands where nitrate leaches from the bottom of the root zone and (ii) denitrifying zones in the aquifers where nitrate is removed before entering the surface water (N-retention). N-retention affects the choice of field mitigation measures to reduce delivered N to surface water. Farmland parcels associated with high N-retention gives the lowest impact of the targeted field measures and vice versa.
View Article and Find Full Text PDFHyporheic sediments are influenced by physical, biological, and chemical processes due to the interactions with river water and has been shown to play an important role in the environmental fate of pesticides. Therefore, this study evaluated the bacterial degradation potential of MCPA, metolachlor and propiconazole in hyporheic sediments sampled along a 20 km long stretch of an agriculturally impacted river dominated primarily by water losing conditions. Water physicochemical parameters in the river and nearby groundwater wells were assessed along with pesticide sorption to sediments and bacterial community composition.
View Article and Find Full Text PDFGroundwater contamination by recalcitrant organic micropollutants such as pesticide residues poses a great threat to the quality of drinking water. One way to remediate drinking water containing micropollutants is to bioaugment with specific pollutant degrading bacteria. Previous attempts to augment sand filters with the 2,6-dichlorobenzamide (BAM) degrading bacterium Aminobacter niigataensis MSH1 to remediate BAM-polluted drinking water initially worked well, but the efficiency rapidly decreased due to loss of degrader bacteria.
View Article and Find Full Text PDFThe spatial and temporal variability of denitrification makes it challenging to integrate conceptual, process-based understandings of nitrate transport and retention into numerical modeling at the catchment scale, although it is critical for the realism and predictive power of the model. In this study, we propose a novel approach where the conceptual understandings of the spatial structure of denitrification zones and the corresponding representative denitrification rates are transformed into a form that can be integrated into a multi-point statistical simulation framework. This is done by constructing a denitrification training image (TI) coupled to a geophysically based TI of the hydrogeological structure.
View Article and Find Full Text PDFTrace levels of sulfonamide antibiotics are ubiquitous in reclaimed water, yet environmental pathways to completely remove those chemicals are not well understood when such water is used to restore flows in dried rivers. This study investigated sulfonamide sorption-desorption, biodegradation, and mineralization processes with seven sediments from a reclaimed water-dominant river. Batch experiments were conducted under oxic and anoxic (nitrate-reducing) conditions, and each removal process of sulfamethazine, sulfadiazine, and sulfamethoxazole (SMX) was evaluated individually at environmentally relevant concentrations (≤ 10 μg/L).
View Article and Find Full Text PDFAminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells.
View Article and Find Full Text PDFGroundwater is an important drinking water resource. To ensure clean drinking water, managed aquifer recharge (MAR) could be an attractive solution when recharging with treated wastewater. The installation of reactive barriers, e.
View Article and Find Full Text PDFWhen groundwater-based drinking water supply becomes contaminated, the timing and source of contamination are obvious questions. However, contaminants often have diffuse sources and different contaminants may have different sources even in a single groundwater well, making these questions complicated to answer. Age dating of groundwater has been used to reconstruct contaminant travel times to wells; however, critics have highlighted that groundwater flow is often complex with mixing of groundwater of different ages.
View Article and Find Full Text PDFGroundwater extracted for drinking water production is commonly treated by aeration and sand filtration. However, this simple treatment is typically unable to remove pesticide residues. As a solution, bioaugmentation of sand filter units (i.
View Article and Find Full Text PDFNitrogen (N) leaching caused by agricultural activities is one of the major threats to the aquatic ecosystems and public health. Moving from the agricultural soils through the subsurface and reemerging to the surface water, N undergoes various biogeochemical reactions along pathways in the subsurface, which occur heterogeneously in space and time. Thus to improve our understanding on the fate and distribution of N in the aquatic environment, detailed knowledge about the subsurface hydrogeological and biogeochemical conditions, especially the redox conditions, are essential.
View Article and Find Full Text PDFAs groundwater-fed waterworks clean their raw inlet water with sand filters, a variety of pro- and eukaryotic microbial communities develop on these filters. While several studies have targeted the prokaryotic sand filter communities, little is known about the eukaryotic communities, despite the obvious need for knowledge of microorganisms that get in contact with human drinking water. With a new general eukaryotic primer set (18S, V1-V3 region), we performed FLX-454 sequencing of material from 21 waterworks' sand filters varying in age (3-40 years) and geographical location on a 250 km east-west axis in Denmark, and put the data in context of their previously published prokaryotic communities.
View Article and Find Full Text PDFAppl Environ Microbiol
March 2019
This study assessed the dispersal of five bacterial communities from contrasting compartments along a fractured clay till depth profile comprising plow layer soil, preferential flow paths (biopores and the tectonic fractures below), and matrix sediments, down to 350 cm below the surface. A recently developed expansion of the porous surface model (PSM) was used to capture bacterial communities dispersing under controlled hydration conditions on a soil-like surface. All five communities contained bacteria capable of active dispersal under relatively low hydration conditions (-3.
View Article and Find Full Text PDFPreferential flow paths in subsurface soils serve as transport routes for water, dissolved organic matter and oxygen. Little is known about bacterial communities in flow paths or in subsoils below ∼4 m. We compared communities from preferential flow paths (biopores, fractures and sand lenses) with those in adjacent matrix sediments of clayey till from the plough layer to a depth of 6 m.
View Article and Find Full Text PDFNew economic developments in the Arctic, such as shipping and oil exploitation, bring along unprecedented risks of marine oil spills. Microorganisms have played a central role in degrading and reducing the impact of the spilled oil during past oil disasters. However, in the Arctic, and in particular in its pristine areas, the self-cleaning capacity and biodegradation potential of the natural microbial communities have yet to be uncovered.
View Article and Find Full Text PDFIn this study, we developed a method that provides profiles of community-level surface dispersal from environmental samples under controlled hydration conditions and enables us to isolate and uncover the diversity of the fastest bacterial dispersers. The method expands on the porous surface model (PSM), previously used to monitor the dispersal of individual bacterial strains in liquid films at the surface of a porous ceramic disc. The novel procedure targets complex communities and captures the dispersed bacteria on a solid medium for growth and detection.
View Article and Find Full Text PDFThe pesticide metabolite 2,6-dichlorobenzamide (BAM) is very persistent in both soil and groundwater and has become one of the most frequently detected groundwater micropollutants. BAM is not removed by the physico-chemical treatment techniques currently used in drinking water treatment plants (DWTP); therefore, if concentrations exceed the legal threshold limit, it represents a sizeable problem for the stability and quality of drinking water production, especially in places that depend on groundwater for drinking water. Bioremediation is suggested as a valuable strategy for removing BAM from groundwater by deploying dedicated BAM-degrading bacteria in DWTP sand filters.
View Article and Find Full Text PDFEnviron Technol
November 2017
This study aims to investigate the depth distribution of the Nitrate Reduction Potential (NRP) on a natural and a re-established wetland. The obtained NRP provides a valuable data of the driving factors affecting denitrification, the Dissimilatory Nitrate Reduction to Ammonium (DNRA) process and the performance of a re-established wetland. Intact soil cores were collected and divided in slices for the determination of Organic Matter (OM) through Loss of Ignition (LOI) as well as Dissolved Organic Carbon (DOC) and NRP spiking nitrate in batch tests.
View Article and Find Full Text PDFPesticide-polluted drinking water may be remediated by inoculating waterworks sand filters with specific degrading bacteria. However, degradation efficiency is often hampered by the poor adhesion behaviour of the introduced bacteria. The phenoxy acid herbicide 4-chloro-2-methyl-phenoxy-acetic acid (MCPA) is a widespread groundwater contaminant.
View Article and Find Full Text PDFAminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C and N source and is a potential catalyst for biotreatment of BAM-contaminated groundwater in filtration units of drinking water treatment plants (DWTPs). The oligotrophic environment of DWTPs including trace pollutant concentrations, and the high flow rates impose challenges for micropollutant biodegradation in DWTPs.
View Article and Find Full Text PDFGroundwater contamination by pesticide residues often leads to the closure of drinking water wells, making the development of new techniques to remediate drinking water resources of considerable interest. Pesticide-degrading bacteria were recently added to a waterworks sand filter in an attempt to remediate pesticide-polluted drinking water. The density of the introduced bacteria, however, decreased rapidly, which was partly attributed to predation by protozoa in the sand filter.
View Article and Find Full Text PDFPesticides are used extensively worldwide, which has led to the unwanted contamination of soil and water resources. Former use of the herbicide 2,6-dichlorobenzonitrile (dichlobenil) has caused pollution of ground and surface water resources by the stable degradation product 2,6-dichlorobenzamide (BAM) in several parts of Europe, which has resulted in the costly closure of several drinking water wells. One strategy for preventing this in future is bioaugmentation using bacterial degraders.
View Article and Find Full Text PDF