Publications by authors named "Aakash Jhaveri"

Background & Aims: Sporadic colorectal cancers arise from initiating mutations in APC, producing oncogenic β-catenin/TCF-dependent transcriptional reprogramming. Similarly, the tumor suppressor axis regulated by the intestinal epithelial receptor GUCY2C is among the earliest pathways silenced in tumorigenesis. Retention of the receptor, but loss of its paracrine ligands, guanylin and uroguanylin, is an evolutionarily conserved feature of colorectal tumors, arising in the earliest dysplastic lesions.

View Article and Find Full Text PDF

The five-year survival rate for pancreatic ductal adenocarcinoma (PDAC) has remained a dismal 9% for approximately 40 years with an urgent need for novel therapeutic interventions. ONC201 is the founding member of the imipridone class, comprised of orally bioavailable small molecules that have shown efficacy in multiple tumor types both in animal models and in Phase I/II clinical trials. ONC201 is a potent inducer of the tumor necrosis factor related apoptosis inducing ligand (TRAIL) pathway.

View Article and Find Full Text PDF

ONC201 demonstrated promising activity in patients with advanced endometrial cancer in a Phase I clinical trial. ONC201 activates the integrated stress response (ISR) and upregulates TRAIL and its receptor DR5. We hypothesized ONC201 upregulation of DR5 could sensitize tumors to TRAIL and combination of ONC201 and TRAIL would lead to enhanced cell death in endometrial cancer models.

View Article and Find Full Text PDF

Colorectal cancer (CRC) caused over 900,000 deaths worldwide in 2020. A majority of late-stage CRC patients are treated with 5-fluorouracil (5-FU) combined with either irinotecan (CPT-11), oxaliplatin, or both. Despite their widespread use, the mechanisms of efficacy and toxicity of these drugs remain incompletely understood.

View Article and Find Full Text PDF

ONC201 was initially identified as an inducer of cell death through the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway. The compound is currently being tested in patients with hematological malignancies and solid tumors, including those of the breast. We investigated strategies to convert the response of breast cancers to ONC201 from anti-proliferative to apoptotic.

View Article and Find Full Text PDF

ONC201 was originally discovered as TNF-Related Apoptosis Inducing Ligand (TRAIL)-inducing compound TIC10. ONC201 appears to act as a selective antagonist of the G protein coupled receptor (GPCR) dopamine receptor D2 (DRD2), and as an allosteric agonist of mitochondrial protease caseinolytic protease P (ClpP). Downstream of target engagement, ONC201 activates the ATF4/CHOP-mediated integrated stress response leading to TRAIL/Death Receptor 5 (DR5) activation, inhibits oxidative phosphorylation via c-myc, and inactivates Akt/ERK signaling in tumor cells.

View Article and Find Full Text PDF

Development of higher rates of nondiabetic glomerulosclerosis (GS) in African Americans has been attributed to two coding sequence variants (G1 and G2) in the APOL1 gene. To date, the cellular function and the role of APOL1 variants (Vs) in GS are still unknown. In this study, we examined the effects of overexpressing wild-type (G0) and kidney disease risk variants (G1 and G2) of APOL1 in human podocytes using a lentivirus expression system.

View Article and Find Full Text PDF

It is well known that patients with HIV are prone to diabetes mellitus because of the side effects of HARRT. However, whether high glucose affects the HIV infection of T cells is not clear. Recent studies have shown that upregulation of GLUT-1 renders T cells susceptible to HIV infection.

View Article and Find Full Text PDF