Our knowledge of the contribution of genetic interactions () to variation in human complex traits remains limited, partly due to the lack of efficient, powerful, and interpretable algorithms to detect interactions. Recently proposed approaches for set-based association tests show promise in improving the power to detect epistasis by examining the aggregated effects of multiple variants. Nevertheless, these methods either do not scale to large Biobank data sets or lack interpretability.
View Article and Find Full Text PDFThe contribution of epistasis (interactions among genes or genetic variants) to human complex trait variation remains poorly understood. Methods that aim to explicitly identify pairs of genetic variants, usually single nucleotide polymorphisms (SNPs), associated with a trait suffer from low power due to the large number of hypotheses tested while also having to deal with the computational problem of searching over a potentially large number of candidate pairs. An alternate approach involves testing whether a single SNP modulates variation in a trait against a polygenic background.
View Article and Find Full Text PDF