Background: Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus identifying systematic variation in genetic risk may provide insights into disease origins.
Objective: We investigated genetic heterogeneity in AD risk through a multi-step analysis.
Background: Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data.
View Article and Find Full Text PDFSingle particle cryo-electron microscopy has become a critical tool in structural biology over the last decade, able to achieve atomic scale resolution in three dimensional models from hundreds of thousands of (noisy) two-dimensional projection views of particles frozen at unknown orientations. This is accomplished by using a suite of software tools to (i) identify particles in large micrographs, (ii) obtain low-resolution reconstructions, (iii) refine those low-resolution structures, and (iv) finally match the obtained electron scattering density to the constituent atoms that make up the macromolecule or macromolecular complex of interest. Here, we focus on the second stage of the reconstruction pipeline: obtaining a low resolution model from picked particle images.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) exhibits considerable phenotypic heterogeneity, suggesting the potential existence of subtypes. AD is under substantial genetic influence, thus identifying systematic variation in genetic risk may provide insights into disease origins.
Objective: We investigated genetic heterogeneity in AD risk through a multi-step analysis.
Causal interactions and correlations between clinically-relevant biomarkers are important to understand, both for informing potential medical interventions as well as predicting the likely health trajectory of any individual as they age. These interactions and correlations can be hard to establish in humans, due to the difficulties of routine sampling and controlling for individual differences (e.g.
View Article and Find Full Text PDFIn this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms).
View Article and Find Full Text PDFOdors emanating from a biologically relevant source are rapidly embedded within a windy, turbuluent medium that folds and spins filaments into fragmented strands of varying sizes. Environmental odor plumes therefore exhibit complex spatiotemporal dynamics, and rarely yield an easily discernible concentration gradient marking an unambiguous trail to an odor source. Thus, sensory integration of chemical input, encoding odor identity or concentration, and mechanosensory input, encoding wind speed, is a critical task that animals face in resolving the complex dynamics of odor plumes and tracking an odor source.
View Article and Find Full Text PDFHomogeneously structured, fluctuation-driven networks of spiking neurons can exhibit a wide variety of dynamical behaviors, ranging from homogeneity to synchrony. We extend our partitioned-ensemble average (PEA) formalism proposed in Zhang et al. (Journal of Computational Neuroscience, 37(1), 81-104, 2014a) to systematically coarse grain the heterogeneous dynamics of strongly coupled, conductance-based integrate-and-fire neuronal networks.
View Article and Find Full Text PDFA common goal in data-analysis is to sift through a large data-matrix and detect any significant submatrices (i.e., biclusters) that have a low numerical rank.
View Article and Find Full Text PDFInfant rats randomly cycle between the sleeping and waking states, which are tightly correlated with the activity of mutually inhibitory brainstem sleep and wake populations. Bouts of sleep and wakefulness are random; from P2-P10, sleep and wake bout lengths are exponentially distributed with increasing means, while during P10-P21, the sleep bout distribution remains exponential while the distribution of wake bouts gradually transforms to power law. The locus coeruleus (LC), via an undeciphered interaction with sleep and wake populations, has been shown experimentally to be responsible for the exponential to power law transition.
View Article and Find Full Text PDFProjection-neurons (PNs) within the antennal lobe (AL) of the hawkmoth respond vigorously to odor stimulation, with each vigorous response followed by a ~1 s period of suppression-dubbed the "afterhyperpolarization-phase," or AHP-phase. Prior evidence indicates that this AHP-phase is important for the processing of odors, but the mechanisms underlying this phase and its function remain unknown. We investigate this issue.
View Article and Find Full Text PDFHomogeneously structured networks of neurons driven by noise can exhibit a broad range of dynamic behavior. This dynamic behavior can range from homogeneity to synchrony, and often incorporates brief spurts of collaborative activity which we call multiple-firing-events (MFEs). These multiple-firing-events depend on neither structured architecture nor structured input, and are an emergent property of the system.
View Article and Find Full Text PDFRandomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous "multiple firing events" (MFEs) which manifest in between these two dynamical extremes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2013
One of the fundamental questions in system neuroscience is how the brain encodes external stimuli in the early sensory cortex. It has been found in experiments that even some simple sensory stimuli can activate large populations of neurons. It is believed that information can be encoded in the spatiotemporal profile of these collective neuronal responses.
View Article and Find Full Text PDFFront Comput Neurosci
May 2013
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking.
View Article and Find Full Text PDFThis paper proposes that the network dynamics of the mammalian visual cortex are highly structured and strongly shaped by temporally localized barrages of excitatory and inhibitory firing we call 'multiple-firing events' (MFEs). Our proposal is based on careful study of a network of spiking neurons built to reflect the coarse physiology of a small patch of layer 2/3 of V1. When appropriately benchmarked this network is capable of reproducing the qualitative features of a range of phenomena observed in the real visual cortex, including spontaneous background patterns, orientation-specific responses, surround suppression and gamma-band oscillations.
View Article and Find Full Text PDFRandomly connected networks of neurons driven by Poisson inputs are often assumed to produce "homogeneous" dynamics, characterized by largely independent firing and approximable by diffusion processes. At the same time, it is well known that such networks can fire synchronously. Between these two much studied scenarios lies a vastly complex dynamical landscape that is relatively unexplored.
View Article and Find Full Text PDFThroughout the life of animals and human beings, blood vessel systems are continuously adapting their structures - the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels - to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable.
View Article and Find Full Text PDFPLoS Comput Biol
December 2012
Several experiments indicate that there exists substantial synaptic-depression at the synapses between olfactory receptor neurons (ORNs) and neurons within the drosophila antenna lobe (AL). This synaptic-depression may be partly caused by vesicle-depletion, and partly caused by presynaptic-inhibition due to the activity of inhibitory local neurons within the AL. While it has been proposed that this synaptic-depression contributes to the nonlinear relationship between ORN and projection neuron (PN) firing-rates, the precise functional role of synaptic-depression at the ORN synapses is not yet fully understood.
View Article and Find Full Text PDFJ Comput Neurosci
February 2012
We present an event tree analysis of studying the dynamics of the Hodgkin-Huxley (HH) neuronal networks. Our study relies on a coarse-grained projection to event trees and to the event chains that comprise these trees by using a statistical collection of spatial-temporal sequences of relevant physiological observables (such as sequences of spiking multiple neurons). This projection can retain information about network dynamics that covers multiple features, swiftly and robustly.
View Article and Find Full Text PDFWe present a numerical analysis of the dynamics of all-to-all coupled Hodgkin-Huxley (HH) neuronal networks with Poisson spike inputs. It is important to point out that, since the dynamical vector of the system contains discontinuous variables, we propose a so-called pseudo-Lyapunov exponent adapted from the classical definition using only continuous dynamical variables, and apply it in our numerical investigation. The numerical results of the largest Lyapunov exponent using this new definition are consistent with the dynamical regimes of the network.
View Article and Find Full Text PDFWe discuss how to characterize long-time dynamics of non-smooth dynamical systems, such as integrate-and-fire (I&F) like neuronal network, using Lyapunov exponents and present a stable numerical method for the accurate evaluation of the spectrum of Lyapunov exponents for this large class of dynamics. These dynamics contain (i) jump conditions as in the firing-reset dynamics and (ii) degeneracy such as in the refractory period in which voltage-like variables of the network collapse to a single constant value. Using the networks of linear I&F neurons, exponential I&F neurons, and I&F neurons with adaptive threshold, we illustrate our method and discuss the rich dynamics of these networks.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2009
We introduce a framework wherein various measurements of a pulse-coupled network's stationary dynamics can be expanded in terms of the network's connectivity. Such measurements include the occurrence rate of pulses (e.g.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2009
It has been shown that a single standard linear integrate-and-fire (IF) neuron under a general time-dependent stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble. Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks can indeed give rise to chaotic dynamics under an external periodic current drive.
View Article and Find Full Text PDF