Publications by authors named "AY Du"

Transposable elements (TEs) comprise ~50% of our genome, but knowledge of how TEs affect genome evolution remains incomplete. Leveraging ENCODE4 data, we provide the most comprehensive study to date of TE contributions to the regulatory genome. We find 236,181 (~25%) human candidate cis-regulatory elements (cCREs) are TE-derived, with over 90% lineage-specific since the human-mouse split, accounting for 8-36% of lineage-specific cCREs.

View Article and Find Full Text PDF

Recent studies have shown that the noncoding genome can produce unannotated proteins as antigens that induce immune response. One major source of this activity is the aberrant epigenetic reactivation of transposable elements (TEs). In tumors, TEs often provide cryptic or alternate promoters, which can generate transcripts that encode tumor-specific unannotated proteins.

View Article and Find Full Text PDF

Genome browsers have become an intuitive and critical tool to visualize and analyze genomic features and data. Conventional genome browsers display data/annotations on a single reference genome/assembly; there are also genomic alignment viewer/browsers that help users visualize alignment, mismatch, and rearrangement between syntenic regions. However, there is a growing need for a comparative epigenome browser that can display genomic and epigenomic data sets across different species and enable users to compare them between syntenic regions.

View Article and Find Full Text PDF

Many transposable elements (TEs) contain transcription factor binding sites and are implicated as potential regulatory elements. However, TEs are rarely functionally tested for regulatory activity, which in turn limits our understanding of how TE regulatory activity has evolved. We systematically tested the human LTR18A subfamily for regulatory activity using massively parallel reporter assay (MPRA) and found AP-1- and CEBP-related binding motifs as drivers of enhancer activity.

View Article and Find Full Text PDF

Saccharina japonica is an ecologically and economically important seaweed that is dominant in the rocky shores of cold-temperate regions, forms the major component of productive beds, and affects marine environments. S. japonica exhibits a high photosynthetic efficiency in natural seawater with low dissolved CO concentration, thus suggesting the presence of its carbon-concentrating mechanism (CCM).

View Article and Find Full Text PDF

Structural variation (SV), including insertions and deletions (indels), is a primary mechanism of genome evolution. However, the mechanism by which SV contributes to epigenome evolution is poorly understood. In this study, we characterized the association between lineage-specific indels and epigenome differences between human and chimpanzee to investigate how SVs might have shaped the epigenetic landscape.

View Article and Find Full Text PDF

Most phenotypic screens aiming to discover new antimalarial chemotypes begin with low cost, high-throughput tests against the asexual blood stage (ABS) of the malaria parasite life cycle. Compounds active against the ABS are then sequentially tested in more difficult assays that predict whether a compound has other beneficial attributes. Although applying this strategy to new chemical libraries may yield new leads, repeated iterations may lead to diminishing returns and the rediscovery of chemotypes hitting well-known targets.

View Article and Find Full Text PDF

Deep reinforcement learning (DRL) has excellent performance in continuous control problems and it is widely used in path planning and other fields. An autonomous path planning model based on DRL is proposed to realize the intelligent path planning of unmanned ships in the unknown environment. The model utilizes the deep deterministic policy gradient (DDPG) algorithm, through the continuous interaction with the environment and the use of historical experience data; the agent learns the optimal action strategy in a simulation environment.

View Article and Find Full Text PDF

In the version of this article initially published, grant PF-17-201-01-TBG from the American Cancer Society to author Erica C. Pehrsson was not included in the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Transposable elements (TEs) are an abundant and rich genetic resource of regulatory sequences. Cryptic regulatory elements within TEs can be epigenetically reactivated in cancer to influence oncogenesis in a process termed onco-exaptation. However, the prevalence and impact of TE onco-exaptation events across cancer types are poorly characterized.

View Article and Find Full Text PDF
Article Synopsis
  • - The lack of collaboration between academia and the pharmaceutical industry limits new drug discovery, but open source drug initiatives, like sharing physical compounds, could help bridge this gap and accelerate research.
  • - The Medicines for Malaria Venture created the Malaria Box, a collection of over 400 compounds tested against malaria, which has been shared with almost 200 research groups, encouraging public data sharing on screening results.
  • - Recent findings from the Malaria Box screenings revealed mechanisms of action for many compounds against various life stages of the malaria parasite, and some showed effectiveness against other pathogens and cancer cell lines, providing valuable data for further drug development.
View Article and Find Full Text PDF

Objective: To explore the effect of Danggui Yinzi (DY) on delayed allergy in model mice with qi-blood deficiency syndrome (QBDS).

Methods: QBDS model was established in 48 Kuming mice of SPF grade by using reserpine and acetophenone hydrazine. Forty of them were then randomly divided into the model group, the loratadine group, the high dose DY group, the middle dose DY group, and the low dose DY group, 8 in each group.

View Article and Find Full Text PDF

Preventing transmission is an important element of malaria control. However, most of the current available methods to assay for malaria transmission blocking are relatively low throughput and cannot be applied to large chemical libraries. We have developed a high-throughput and cost-effective assay, the Saponin-lysis Sexual Stage Assay (SaLSSA), for identifying small molecules with transmission-blocking capacity.

View Article and Find Full Text PDF

Background And Objective: We postulate that professional proximity due to common patients and geographical proximity among practice locations are significant factors influencing the adoption of health information exchange (HIE) services by healthcare providers. The objective of this study is to investigate the direct and indirect network effects of these drivers on HIE diffusion.

Design: Multi-dimensional scaling and clustering are first used to create different clusters of physicians based on their professional and geographical proximities.

View Article and Find Full Text PDF

Acetylcholinesterase (AChE) is emerging as an important contributor to apoptosis in various cell types. However, overexpression of AChE does not initiate apoptosis, and cells which express AChE at basal levels grow normally, suggesting that AChE may function differently between normal and apoptotic conditions. In this study, we determined that an AChE-derived protein (∼55 kDa) positively correlated with cellular apoptotic levels.

View Article and Find Full Text PDF

A new class of superlattice, crystalline amorphous superlattice (CASL), by alternatively depositing two semiconductor materials, is proposed. CASL displays three states depending on the component materials' phase: both polycrystalline phases, both amorphous phases, and one polycrystalline phase while another amorphous phase. Using materials capable of reversible phase transition, CASL can demonstrate reversibility among three states.

View Article and Find Full Text PDF

A novel small molecule, 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol (EOD), was synthesized in our laboratory. Previously, we reported pharmacological properties of EOD, triggering apoptosis in Human umbilical vein endothelial cells (HUVECs). Here, we further investigated the effects of EOD on the growth of A549 human lung cancer cells.

View Article and Find Full Text PDF

Two safrole oxide derivatives, 1-methoxy-3-(3,4-methylenedioxyphenyl)-2-propanol (MOD) and 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol (EOD), were newly synthesized as promoters of apoptosis in vascular endothelial cells (VECs). The purpose of this study was to investigate the effects of these two safrole oxide derivatives on cell growth and apoptosis induced by deprivation of survival factors (serum and fibroblast growth factors, aFGF and bFGF) in VECs. Morphological changes were observed with light microscopy.

View Article and Find Full Text PDF

Cross-sectional transmission electron microscopy (XTEM) has been used to diagnose silicon LSI circuits and Josephson junction devices. For LSI circuits, some typical failure problems have been presented. For Nb-Si-Nb Josephson junction, microholes in the thin silicon layer have observed, and they are responsible for the short circuiting of these devices.

View Article and Find Full Text PDF