Publications by authors named "AV Postnikov"

Dispersion forces start to play role in modern micro/nanoelectromechanical devices, but the methods to measure these forces at distances close to contact (<50 nm) suffer from pull-in instability. The method of adhered cantilever proposed recently has no instability and is able to make measurements at short separations. To measure the force at the average distance between surfaces in contact, one has to know the shape of an elastic beam with one end fixed at a height of 1-10 μm and the other end adhered to the substrate.

View Article and Find Full Text PDF

An approach for measuring the surface profile of the samples with reflection variations using the Nomarski differential interference method is presented. The system is analyzed with Jones's matrices tool, and polarization effects of a non-polarizing beam splitter are taken into account. Equations are also developed to allow the determination of the surface profile from interference intensity when the sample reflectively is not uniform.

View Article and Find Full Text PDF

The emerging CdTe-BeTe semiconductor alloy that exhibits a dramatic mismatch in bond covalency and bond stiffness clarifying its vibrational-mechanical properties is used as a benchmark to test the limits of the percolation model (PM) worked out to explain the complex Raman spectra of the related but less contrasted ZnBe-chalcogenides. The test is done by way of experiment ([Formula: see text]), combining Raman scattering with X-ray diffraction at high pressure, and ab initio calculations ([Formula: see text] ~ 0-0.5; [Formula: see text]~1).

View Article and Find Full Text PDF

A double interferometer technique is presented. One interferometer generates a reference scale, while the other one is used as a measuring tool. The presented apparatus makes it possible to overcome 2 ambiguity by monitoring the phase difference at short time or space intervals.

View Article and Find Full Text PDF

Raman scattering and ab initio Raman/phonon calculations, supported by X-ray diffraction, are combined to study the vibrational properties of ZnBeTe under pressure. The dependence of the Be-Te (distinct) and Zn-Te (compact) Raman doublets that distinguish between Be- and Zn-like environments is examined within the percolation model with special attention to x ~ (0,1). The Be-like environment hardens faster than the Zn-like one under pressure, resulting in the two sub-modes per doublet getting closer and mechanically coupled.

View Article and Find Full Text PDF

Hypothesis Water electrolysis performed by short (≲5μs) voltage pulses of alternating polarity generates a dense cloud of H and O nanobubbles. Platinum electrodes turn black in this process, while they behave differently when the polarity is not altered. We prove that the modification of Pt is associated with highly energetic impact of nanobubbles rather than with any electrochemical process.

View Article and Find Full Text PDF

Volume-phonon-polaritons (VPP's) propagating at a light-in-vacuum-like speed are identified in the wurtzite-type ZnMgSe mixed crystal by near-forward Raman scattering. Their detection is selective to both the laser energy and the laser polarization, depending on whether the ordinary (n) or extraordinary (n) refractive index is addressed. Yet, no significant linear birefringence (n [Formula: see text] n) is observed by ellipsometry.

View Article and Find Full Text PDF

Gold nanoparticles (GNPs) may serve as devices to emit electromagnetic radiation in the terahertz (THz) range, whereby the energy is delivered by radio frequency or microwave photons which will not by themselves induce transitions between sparse confinement-shaped electron levels of a GNP, but may borrow the energy from longitudinal acoustic (LA) phonons to overcome the confinement gap. Upon excitation, the Fermi electron cannot relax otherwise than via emitting a THz photon, the other relaxation channels being blocked by force of shape and size considerations. Within this general scope that has already been outlined earlier, the present work specifically discusses two-phonon processes, namely (i) a combined absorption-emission of two phonons from the top of the LA branch, and (ii) an absorption of two such phonons with nearly identical wavevectors.

View Article and Find Full Text PDF

Nanobubbles in liquids are mysterious gaseous objects with exceptional stability. They promise a wide range of applications, but their production is not well controlled and localized. Alternating polarity electrolysis of water is a tool that can control the production of bulk nanobubbles in space and time without generating larger bubbles.

View Article and Find Full Text PDF

Using different experimental techniques we visualize a cloud of gas in water that is produced electrochemically by the alternating polarity process. Liquid enriched with gas does not contain bubbles strongly scattering visible light but its refractive index changes significantly near the electrodes. The change of the refractive index is a collective effect of bulk nanobubbles with a diameter smaller than 200 nm.

View Article and Find Full Text PDF

Water electrolysis performed in microsystems with a fast change of voltage polarity produces optically invisible nanobubbles containing H and O gases. In this form the gases are able to the reverse reaction of water formation. Here we report extreme phenomena observed in a millimeter-sized open system.

View Article and Find Full Text PDF

Near-forward Raman scattering combined with ab initio phonon and bond length calculations is used to study the 'phonon-polariton' transverse optical modes (with mixed electrical-mechanical character) of the II-VI ZnSe1-x S x mixed crystal under pressure. The goal of the study is to determine the pressure dependence of the poorly-resolved percolation-type Zn-S Raman doublet of the three oscillator [1  ×  (Zn-Se), 2  ×  (Zn-S)] ZnSe0.68S0.

View Article and Find Full Text PDF

Molecular magnets incorporate transition-metal ions with organic groups providing a bridge to mediate magnetic exchange interactions between the ions. Among them are star-shaped molecules in which antiferromagnetic couplings between the central and peripheral atoms are predominantly present. Those configurations lead to an appreciable spin moment in the nonfrustrated ground state.

View Article and Find Full Text PDF

We report a comprehensive study of the electronic and magnetic properties of a star-shaped molecule comprising a MnII4O6 core. One feature of this compound is weak magnetic coupling constants compared to other similar polyoxo compounds. This leads to complicated low-lying magnetic states in which the ground state is not well separated from the upper-lying states, yielding a high-spin molecule with a giant magnetic moment of up to 20 microB/formula unit.

View Article and Find Full Text PDF

Polymetallic, highly organized molecular architectures can be created by "bottom-up" self-assembly methods using ligands with appropriately programmed coordination information. Ligands based on 2,6-picolyldihydrazone (tritopic and pentatopic) and 3,6-pyridazinedihydrazone (tetratopic) cores, with tridentate coordination pockets, are highly specific and lead to the efficient self-assembly of square [3 x 3] Mn9, [4 x 4] Mn16, and [5 x 5] Mn25 nanoscale grids. Subtle changes in the tritopic ligand composition to include bulky end groups can lead to a rectangular 3 x [1 x 3] Mn9 grid, while changing the central pyridazine to a more sterically demanding pyrazole leads to simple dinuclear copper complexes, despite the potential for binding four metal ions.

View Article and Find Full Text PDF

Mn 3d electronic states in the dilute magnetic semiconductor Zn(1-x)Mn(x)S (x = 0.1-0.3) are studied using soft x-ray emission (XES) measurements and density functional theory (DFT).

View Article and Find Full Text PDF

Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane.

View Article and Find Full Text PDF

A combination of scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) techniques have been performed on the wheel-shaped [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- and the ball-shaped [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-PW9O34)12]36- deposited on highly oriented pyrolytic graphite surfaces. Small, regular molecule clusters, as well as separated single molecules, were observed. The size of the molecules is in agreement with the data determined by X-ray crystallography.

View Article and Find Full Text PDF

The electronic structure of the single molecule magnet system {M[Fe(L(1))(2)](3)}4CHCl(3) [M=Fe,Cr;L(1)=CH(3)N(CH(2)CH(2)O)(2) (2-)] has been studied using x-ray photoelectron spectroscopy, x-ray-absorption spectroscopy, soft-x-ray emission spectroscopy, as well as theoretical density-functional-based methods. There is a good agreement between theoretical calculations and experimental data. The valence band mainly consists of three bands between 2 and 30 eV.

View Article and Find Full Text PDF