We show that two-dimensional fermions with dispersion k^{2} or k^{4} undergo a first-order Stoner transition to a fully spin-polarized state despite the fact that the spin susceptibility diverges at the critical point. We extend our analysis to systems with dispersion k^{2α} and spin and valley isospin and show that there is a cascade of instabilities into fractional-metal states with some electron bands fully depleted; narrow intermediate ranges of partially depleted bands exist for α<1 or α>2. The susceptibility becomes large near each transition.
View Article and Find Full Text PDFWe analyze the validity of a quasiparticle description of a superconducting state above a metallic quantum-critical point (QCP). A normal state at a QCP is a non-Fermi liquid with no coherent quasiparticles. A superconducting order gaps out low-energy excitations, except for a sliver of states for non-s-wave gap symmetry, and at a first glance, restores coherent quasiparticle behavior.
View Article and Find Full Text PDFWe study symmetry-broken phases in twisted bilayer graphene at small filling above charge neutrality and at van Hove filling. We argue that the Landau functionals for the particle-hole order parameters at these fillings both have an approximate SU(4) symmetry, but differ in the sign of quartic terms. We determine the order parameter manifold of the ground state and analyze its excitations.
View Article and Find Full Text PDFThe origin of the pseudogap behavior, found in many high-T superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid.
View Article and Find Full Text PDFWe analyze the scattering rate for 2D fermions interacting via soft nematic fluctuations. The ground state is an s-wave superconductor, but other pairing channels are almost equally attractive. This strongly alters the scattering rate: At energies beyond the pairing gap Δ, it is renormalized by contributions from all pairing channels.
View Article and Find Full Text PDFRaman experiments on bulk FeSe revealed that the low-frequency part of the B_{1g} Raman response R_{B1g}(Ω), which probes nematic fluctuations, rapidly decreases below the nematic transition at T_{n}∼85 K. Such behavior is expected when a gap opens up and at a first glance is inconsistent with the fact that FeSe remains a metal below T_{n}. We argue that the drop of R_{B1g}(Ω) can be ascribed to the fact that the nematic order drastically changes the orbital content of low-energy excitations near hole and electron pockets, making them nearly mono-orbital.
View Article and Find Full Text PDFIn ferromagnetic superconductors, like URhGe, superconductivity coexists with magnetism near zero field, but then reappears in a finite field range, where the system also displays mass enhancement in the normal state. We present the theoretical understanding of this nonmonotonic behavior. We explore the multiband nature of URhGe and associate reentrant superconductivity and mass enhancement with the topological transition (Lifshitz) in one of the bands in a finite magnetic field.
View Article and Find Full Text PDFWe present a novel mechanism of s-wave pairing in Fe-based superconductors. The mechanism involves holes near d_{xz}/d_{yz} pockets only and is applicable primarily to strongly hole doped materials. We argue that as long as the renormalized Hund's coupling J exceeds the renormalized interorbital Hubbard repulsion U^{'}, any finite spin-orbit coupling gives rise to s-wave superconductivity.
View Article and Find Full Text PDFWe report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies.
View Article and Find Full Text PDFRecent progress in experimental techniques has made it possible to extract detailed information on dynamics of carriers in a correlated electron material from its optical conductivity, [Formula: see text]. This review consists of three parts, addressing the following three aspects of optical response: (1) the role of momentum relaxation; (2) [Formula: see text] scaling of the optical conductivity of a Fermi-liquid metal, and (3) the optical conductivity of non-Fermi-liquid metals. In the first part (section 2), we analyze the interplay between the contributions to the conductivity from normal and umklapp electron-electron scattering.
View Article and Find Full Text PDFThe development of sensible microscopic models is essential to elucidate the normal-state and superconducting properties of the iron-based superconductors. Because these materials are mostly metallic, a good starting point is an effective low-energy model that captures the electronic states near the Fermi level and their interactions. However, in contrast to cuprates, iron-based high-T compounds are multi-orbital systems with Hubbard and Hund interactions, resulting in a rather involved 10-orbital lattice model.
View Article and Find Full Text PDFNear a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between low-energy fermions.
View Article and Find Full Text PDFWe analyze the temperature and doping dependence of the specific heat C(T) in Na(x)CoO(2). This material was conjectured to undergo a Lifshitz-type topological transition at x=x(c)=0.62, in which a new electron Fermi pocket emerges at the Γ point, in addition to the existing hole pocket with large k(F).
View Article and Find Full Text PDFWe argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in weakly doped Fe pnictides erdiffers qualitatively from the ordinary s(+-) state outside the coexistence region as it develops an additional gap component which is a mixture of intrapocket singlet (s(++)) and interpocket spin-triplet pairings (the t state). The coupling constant for the t channel is proportional to the SDW order and involves interactions that do not contribute to superconductivity outside of the SDW region. We argue that the s(+-)- and t-type superconducting orders coexist at low temperatures, and the relative phase between the two is, in general, different from 0 or π, manifesting explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order.
View Article and Find Full Text PDFWe consider 2D Heisenberg antiferromagnets on a triangular lattice with spatially anisotropic interactions in a high magnetic field close to the saturation. We show that this system possesses a rich phase diagram in a field or anisotropy plane due to competition between classical and quantum orders: an incommensurate noncoplanar spiral state, which is favored classically, and a commensurate coplanar state, which is stabilized by quantum fluctuations. We show that the transformation between these two states is highly nontrivial and involves two intermediate phases--the phase with coplanar incommensurate spin order and the one with noncoplanar double-Q spiral order.
View Article and Find Full Text PDFA theory of superconductivity in the iron-based materials requires an understanding of the phase diagram of the normal state. In these compounds, superconductivity emerges when stripe spin density wave (SDW) order is suppressed by doping, pressure or atomic disorder. This magnetic order is often pre-empted by nematic order, whose origin is yet to be resolved.
View Article and Find Full Text PDFWe discuss the form of the damping of magnetic excitations in a metal near a ferromagnetic instability. The paramagnon theory predicts that the damping term should have the form γ(q,Ω)∝Ω/Γ(q), with Γ(q)∝q (the Landau damping). However, the experiments on uranium metallic compounds UGe2 and UCoGe showed that Γ(q) is essentially independent of q.
View Article and Find Full Text PDFRecent experiments on two iron-pnictide families suggest the existence of a single quantum phase transition inside the superconducting dome despite the fact that two separate transition lines--magnetic and nematic-cross the superconducting dome at T(c). Here we argue that these two observations are actually consistent. We show, using a microscopic model, that each order coexists with superconductivity for a wide range of parameters, and both transition lines continue into the superconducting dome below T(c).
View Article and Find Full Text PDFWe analyze instabilities of the collinear up-up-down state of a two-dimensional quantum spin-S spatially anisotropic triangular lattice antiferromagnet in a magnetic field. We find, within the large-S approximation, that near the end point of the plateau, the collinear state becomes unstable due to the condensation of two-magnon bound pairs rather than single magnons. The two-magnon instability leads to a novel two-dimensional vector chiral phase with alternating spin currents but no magnetic order in the direction transverse to the field.
View Article and Find Full Text PDFRecent measurements of the doping dependence of the London penetration depth λ(x) at low T in clean samples of isovalent BaFe2(As(1-x)P(x))2 at T≪T(c) [Hashimoto et al., Science 336, 1554 (2012)] revealed a peak in λ(x) near optimal doping x=0.3.
View Article and Find Full Text PDFWe revisit the issue of superconductivity at the quantum-critical point (QCP) between a 2D paramagnet and a spin-density-wave metal with ordering momentum (π, π). This problem is highly nontrivial because the system at criticality displays a non-Fermi-liquid behavior and because the effective coupling constant λ for the pairing is generally of order one, even when the actual interaction is smaller than fermionic bandwidth. Previous study [M.
View Article and Find Full Text PDFWe analyze the pairing symmetry in Fe-based superconductors AFe2Se2 (A=K, Rb, Cs) which contain only electron pockets. We argue that the pairing condensate in such systems contains not only intrapocket component but also interpocket component, made of fermions belonging to different electron pockets. We analyze the interplay between intrapocket and interpocket pairing, depending on the ellipticity of electron pockets and the strength of their hybridization.
View Article and Find Full Text PDFWe consider electrons on a honeycomb or triangular lattice doped to the saddle point of the band structure. We assume the system parameters are such that spin density wave (SDW) order emerges below a temperature T(N) and investigate the nature of the SDW phase. We argue that at T≤T(N), the system develops a uniaxial SDW phase whose ordering pattern breaks O(3)×Z(4) symmetry and corresponds to an eight-site unit cell with nonuniform spin moments on different sites.
View Article and Find Full Text PDFWe report inelastic neutron scattering measurements of the resonant spin excitations in Ba(1-x)K(x)Fe(2)As(2) over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s(±)-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.
View Article and Find Full Text PDFPhys Rev Lett
September 2011
We introduce an effective low-energy pairing model for Fe-based superconductors with s- and d-wave interaction components and a small number of input parameters and use it to study the doping evolution of the symmetry and the structure of the superconducting gap. We argue that the model describes the entire variety of pairing states found so far in the Fe-based superconductors and allows one to understand the mechanism of the attraction in s(±) and d(x(2)-y(2)) channels, the competition between s- and d-wave solutions, and the origin of superconductivity in heavily doped systems, when only electron or only hole pockets are present.
View Article and Find Full Text PDF