Publications by authors named "ANGELONE L"

Background: Early hospital discharge planning can help to reduce the length of stay and unplanned readmission in high-risk patients. Therefore, it is important to select patients who can benefit from a personalized discharge planning based on validated tools. The modified Blaylock Risk Assessment Screening Score (BRASS) is routinely used in the Molinette Hospital (Turin, Italy) to screen patients at high risk for discharge, but the effectiveness of the discharge planning is uncertain in intermediate-risk patients.

View Article and Find Full Text PDF

Host genetic variability contributes to susceptibility to SARS-CoV-2 infection and COVID-19 evolution and the role of HLA system has not clearly emerged, suggesting the involvement of other factors. Studying response to vaccination with Spyke protein mRNA represents an ideal model to highlight whether the humoral or cellular responses are influenced by HLA. Four hundred and sixteen workers, vaccinated with Comirnaty beginning 2021, were selected within the Azienda Ospedaliera Universitaria "Città della Salute e della Scienza di Torino.

View Article and Find Full Text PDF

: Deaths from drug overdose have reached a crisis level, with more than 100,000 reported from April 2020 to April 2021. Novel approaches to address it are urgently needed. : National Institute on Drug Abuse (NIDA) is leading novel comprehensive efforts to develop safe and effective products that address the needs of the citizens affected by SUD.

View Article and Find Full Text PDF

We describe the results of a T-cell immunity evaluation performed after a median elapsed time of 7 months from second-dose BNT162b2 vaccine administration, in a representative sample of 419 subjects from a large cohort of hospital workers. Overall, the Quantiferon SARS-CoV-2 assay detected a responsive pattern in 49.9%, 59.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 is associated with a severe respiratory disease in China, that rapidly spread across continents. Since the beginning of the pandemic, available data suggested the asymptomatic transmission and patients were treated with specific drugs with efficacy and safety data not always satisfactory. The aim of this review is to describe the vaccines developed by three companies, Pfizer-BioNTech, Moderna, and University of Oxford/AstraZeneca, in terms of both technological and pharmaceutical formulation, safety, efficacy, and immunogenicity.

View Article and Find Full Text PDF

Several pre-clinical and clinical trials show that exogenous pulmonary surfactant has clinical efficacy in inflammatory lung diseases, especially ARDS. By infecting type II alveolar cells, COVID-19 interferes with the production and secretion of the pulmonary surfactant and therefore causes an increase in surface tension, which in turn can lead to alveolar collapse. The use of the pulmonary surfactant seems to be promising as an additional therapy for the treatment of ARDS.

View Article and Find Full Text PDF

Objective: To propose and validate a variation of the classic techniques for the estimation of the transfer function (TF) of a real pacemaker (PM) lead.

Methods: The TF of three commercially available PM leads was measured by combining data from experimental measurements and numerical simulations generated by three sources: a) the experimental local SAR at the tip of the PM lead (single measurement point) exposed to a 64 MHz birdcage body coil; b) the experimental current distribution along the PM lead, obtained by directly injecting a 64 MHz signal inside the lead; c) the electric field (E-field) simulated with a computational model of the 64 MHz birdcage body coil adopted in the experimental measurement performed in a). The effect of the lead trajectory on the estimation of the TF was also estimated.

View Article and Find Full Text PDF

The main objective of this narrative review is to describe the available evidence on the possible antiviral activity of ozone in patients with COVID-19 and its therapeutic applicability through hospital protocols. Amongst different possible therapies for SARS-CoV-2 pneumonia, ozone therapy seems to have an immunological role because of the modulation of cytokines and interferons, including the induction of gamma interferon. Some data suggest the possible role of ozone therapy in SARS, either as a monotherapy or, more realistically, as an adjunct to standard treatment regimens; therefore, there is increasing interest in the role of ozone therapy in COVID-19 treatment The PubMed and Scopus databases and the Italian Scientific Society of Oxygen Ozone Therapy website were used to identify articles focused on ozone therapy.

View Article and Find Full Text PDF

CoViD-19 pandemic heavily impacted most on-going research activities, causing delays and need of re-programming. EASY-NET (NET-2016-02364191) is a network project, started in April 2019, co-funded by the Italian Ministry of Health and the participating regions. Within the general project, centred on the evaluation of Audit and Feedback (A&F) strategies in improving quality and equity in different health care contexts, the Piedmont region is responsible of the work package 3 (WP3) on specific oncology pathways and procedures.

View Article and Find Full Text PDF

Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.

View Article and Find Full Text PDF

Purpose: To assess the mean and variance performance of parallel transmission (pTx) coils for reduction of the absorbed power around electrodes (APAE) in patients implanted with deep brain stimulation (DBS) devices.

Methods: We simulated 4 pTx coils (8 and 16 channels, head and body coils) and a birdcage body coil. We characterized the RF safety risk using the APAE, which is the integral of the deposited power (in Watts) in a small cylindrical volume of brain tissue surrounding the electrode tips.

View Article and Find Full Text PDF

This study investigates radiofrequency (RF)-induced heating in a head model with a 256-channel electroencephalogram (EEG) cap during magnetic resonance imaging (MRI). Nine computational models were implemented each with different EEG lead electrical conductivity, ranging from 1 to 5.8 × 10 S/m.

View Article and Find Full Text PDF

Deep Brain Stimulation (DBS) is an effective therapy for patients disabling motor symptoms from Parkinson's disease, essential tremor, and other motor disorders. Precise, individualized placement of DBS electrodes is a key contributor to clinical outcomes following surgery. Electroencephalography (EEG) is widely used to identify the sources of intracerebral signals from the potential on the scalp.

View Article and Find Full Text PDF

We design, develop, and disseminate a 'virtual population' of five realistic computational models of deep brain stimulation (DBS) patients for electromagnetic (EM) analysis. We found five DBS patients in our institution' research patient database who received high quality post-DBS surgery computer tomography (CT) examinations of the head and neck. Three patients have a single implanted pulse generator (IPG) and the two others have two IPGs (one for each lead).

View Article and Find Full Text PDF

The purpose of this study was to investigate the need for high-resolution detailed anatomical modeling to correctly estimate radio-frequency (RF) safety during magnetic resonance imaging (MRI). RF-induced heating near metallic implanted devices depends on the electric field tangential to the device ( ). and specific absorption rate (SAR) were analyzed in blood vessels of an anatomical model to understand if a standard gel phantom accurately represents the potential heating in tissues due to passive vascular implants such as stents.

View Article and Find Full Text PDF

We investigated how the distribution of magnitude and phase of incident electric field affects RFinduced heating near a hip implant. The results showed that varying the incident electric field, for example due to different phantom shape or different landmark position, for two-or three-dimensional implants can result in up to 50% variation of estimated RF-induced temperature rise. To avoid systematic errors in predicting the RF-induced heating, varied distributions of the incident electric field should be applied.

View Article and Find Full Text PDF

Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.

View Article and Find Full Text PDF

Purpose: To evaluate the local specific absorption rate (SAR) and heating around retained cardiac leads during MRI at 64 MHz (1.5T) and 127 MHz (3T) as a function of RF coil type and imaging landmark.

Methods: Numerical models of retained cardiac leads were built from CT and X-ray images of 6 patients with retained cardiac leads.

View Article and Find Full Text PDF

Purpose: The test reports for the RF-induced heating of metallic devices of hundreds of medical implants have been provided to the U.S. Food and Drug Administration as a part of premarket submissions.

View Article and Find Full Text PDF

We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous.

View Article and Find Full Text PDF

The total product life cycle (TPLC) of medical devices has been defined by four stages: discovery and ideation, regulatory decision, product launch, and postmarket monitoring. Manufacturers of medical devices intended for use in the peripheral vasculature, such as stents, inferior vena cava (IVC) filters, and stent-grafts, mainly use computational modeling and simulation (CM&S) to aid device development and design optimization, supplement bench testing for regulatory decisions, and assess postmarket changes or failures. For example, computational solid mechanics and fluid dynamics enable the investigation of design limitations in the ideation stage.

View Article and Find Full Text PDF

This study describes the MRI-related radio frequency (RF) safety evaluation of breast tissue expander devices to establish safety criteria. Numerical simulations and experimental measurements were performed at 64 MHz with a gel phantom containing a breast expander. Additionally, computational modeling was performed (64 and 128 MHz) with an adult female model, containing a virtually implanted breast tissue expander device for four imaging landmark positions.

View Article and Find Full Text PDF

This study investigates the use of pads with high dielectric constant (HDC) materials to alter electromagnetic field distributions in patients during magnetic resonance imaging (MRI). The study was performed with numerical simulations and phantom measurements. An initial proof-of-concept and validation was performed using a phantom at 64 MHz, showing increases of up to 10% in electromagnetic field when using distilled water as the high dielectric material.

View Article and Find Full Text PDF