IEEE Trans Neural Syst Rehabil Eng
September 2023
Previous studies have demonstrated the potential of surface electromyography (sEMG) spectral decomposition in evaluating muscle performance, motor learning, and early diagnosis of muscle conditions. However, decomposition techniques require large data sets and are computationally demanding, making their implementation in real-life scenarios challenging. Based on the hypothesis that spectral components will present low inter-subject variability, the present paper proposes the foundational principles for developing a real-time system for their extraction by utilizing a pre-defined library of components derived from an extensive data set to match new measurements.
View Article and Find Full Text PDFObjective: In this study, we propose a method for removing artifacts from superficial electromyography (sEMG) data, which have been widely proposed for health monitoring because they encompass the basic neuromuscular processes underlying human motion.
Methods: Our method is based on a spectral source decomposition from single-channel data using a non-negative matrix factorization. The algorithm is validated with two data sets: the first contained muscle activity coupled to artificially generated noises and the second comprised signals recorded under fully unsupervised conditions.
Superficial Electromyography (sEMG) spectrum contains aggregated information from several underlying physiological processes. Due to technological limitations, the isolation of these processes is challenging, and therefore, the interpretation of changes in muscle activity frequency is still controversial. Recent studies showed that the spectrum of sEMG signals recorded from isotonic and short-term isometric contractions can be decomposed into independent components whose spectral features recall those of motor unit action potentials.
View Article and Find Full Text PDFEstimation of muscle activity using surface electromyography (sEMG) is an important non-invasive method that can lead to a deeper understanding of motor-control strategies in humans. Measurement using multiple active electrodes is necessary to estimate not only surface muscle activity but also deep muscle activity in dynamic motion. In this paper, we propose a method for estimating muscle activity of dynamic motions based on anatomical knowledge of muscle structures.
View Article and Find Full Text PDFVoluntary force modulation is defined as the ability to tune the application of force during motion. However, the mechanisms behind this modulation are not yet fully understood. In this study, we examine muscle activity under various resistance levels at a fixed cycling speed.
View Article and Find Full Text PDFBackground: Muscle synergies are now widely discussed as a method for evaluating the existence of redundant neural networks that can be activated to enhance stroke rehabilitation. However, this approach was initially conceived to study muscle coordination during learned motions in healthy individuals. After brain damage, there are several neural adaptations that contribute to the recovery of motor strength, with muscle coordination being one of them.
View Article and Find Full Text PDF