Proc Natl Acad Sci U S A
July 2024
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence.
View Article and Find Full Text PDFWe use the Toda chain model to demonstrate that numerical simulation of integrable Hamiltonian dynamics using time discretization destroys integrability and induces dynamical chaos. Specifically, we integrate this model with various symplectic integrators parametrized by the time step τ and measure the Lyapunov time TΛ (inverse of the largest Lyapunov exponent Λ). A key observation is that TΛ is finite whenever τ is finite but diverges when τ→0.
View Article and Find Full Text PDFContext: Active surveillance for papillary thyroid cancer (PTC) meeting criteria for surgical resection is uncommon. Which patients may prove reasonable candidates for this approach is not well defined.
Objective: This work aimed to examine the feasibility and safety of active surveillance for patients with known or suspected intrathyroidal PTC up to 4 cm in diameter.
While the diagnosis of papillary thyroid carcinomas (PTCs) with tall cell features (PTCtcf) is often made for carcinomas with histological features intermediate between classic and tall cell subtypes of PTC (tcPTC), its comparative signature to that of either tcPTC or classic PTC is less clear. The objective of this study was to perform an integrative clinicopathologic and genomic analysis elucidating the spectrum of tcPTC, PTCtcf, and classic PTC. We analyzed all consecutive patients with tcPTC and PTCtcf evaluated at a tertiary academic referral center between 2005 and 2020, as well as a comparative cohort of classic PTC, in a retrospective observational cohort analysis.
View Article and Find Full Text PDFWeakly nonintegrable many-body systems can restore ergodicity in distinctive ways depending on the range of the interaction network in action space. Action resonances seed chaotic dynamics into the networks. Long-range networks provide well connected resonances with ergodization controlled by the individual resonance chaos time scales.
View Article and Find Full Text PDFWe study the manifestation of the Nernst effect in the Corbino disk subjected to the normal external magnetic field and to the radial temperature gradient. The Corbino geometry offers a precious opportunity for the direct measurement of the magnetization currents that are masked by kinetic contributions to the Nernst current in the conventional geometry. The magnetization currents, also referred to as the edge currents, are independent on the conductivity of the sample which is why they can be conveniently described within the thermodynamic approach.
View Article and Find Full Text PDFWe study phase transitions in a two dimensional weakly interacting Bose gas in a random potential at finite temperatures. We identify superfluid, normal fluid, and insulator phases and construct the phase diagram. At T=0 one has a tricritical point where the three phases coexist.
View Article and Find Full Text PDFWe predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both the potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyze the stability of the current with respect to the fluctuations of the condensate.
View Article and Find Full Text PDFNear a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between low-energy fermions.
View Article and Find Full Text PDFWe combine numerical diagonalization with semianalytical calculations to prove the existence of the intermediate nonergodic but delocalized phase in the Anderson model on disordered hierarchical lattices. We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the delocalized states within the Abou-Chakra, Anderson, and Thouless recursive scheme. This result is supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson model on ensemble of disordered random regular graphs (RRG) of N sites with the connectivity K=2.
View Article and Find Full Text PDFWe consider dipolar excitations propagating via dipole-induced exchange among immobile molecules randomly spaced in a lattice. The character of the propagation is determined by long-range hops (Levy flights). We analyze the eigenenergy spectra and the multifractal structure of the wave functions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
We consider the many-body localization-delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator [Formula: see text] fluid transition, and, for large interactions, there is a reentrance to the insulator regime.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath.
View Article and Find Full Text PDFWe predict the spontaneous modulated emission from a pair of exciton-polariton condensates due to coherent (Josephson) and dissipative coupling. We show that strong polariton-polariton interaction generates complex dynamics in the weak-lasing domain way beyond Hopf bifurcations. As a result, the exciton-polariton condensates exhibit self-induced oscillations and emit an equidistant frequency comb light spectrum.
View Article and Find Full Text PDFBosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes.
View Article and Find Full Text PDFStatistical analysis of the eigenfunctions of the Anderson tight-binding model with on-site disorder on regular random graphs strongly suggests that the extended states are multifractal at any finite disorder. The spectrum of fractal dimensions f(α) defined in Eq. (3) remains positive for α noticeably far from 1 even when the disorder is several times weaker than the one which leads to the Anderson localization; i.
View Article and Find Full Text PDFWe consider weakly interacting bosons in a 1D quasiperiodic potential (Aubry-Azbel-Harper model) in the regime where all single-particle states are localized. We show that the interparticle interaction may lead to the many-body delocalization and we obtain the finite-temperature phase diagram. Counterintuitively, in a wide range of parameters the delocalization requires stronger coupling as the temperature increases.
View Article and Find Full Text PDFOur goals were to (1) estimate the rates of parent-reported versus physician-diagnosed food allergy, (2) determine pediatrician adherence to national guidelines, and (3) obtain pediatricians' perspectives on guideline nonadherence. A mixed method approach was used, including survey, chart review, and qualitative methods. Overall, 10.
View Article and Find Full Text PDFWe consider chiral electrons moving along the one-dimensional helical edge of a two-dimensional topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.
View Article and Find Full Text PDFSelf-assembled YBaCuO diffusive grain boundary submicron Josephson junctions offer a realization of a special regime of the proximity effect, where normal state coherence prevails on the superconducting coherence in the barrier region. Resistance oscillations from the current-voltage characteristic encode mesoscopic information on the junction and more specifically on the minigap induced in the barrier. Their persistence at large voltages is evidence of the long lifetime of the antinodal (high energy) quasiparticles.
View Article and Find Full Text PDFPhys Rev Lett
September 2010
The superconductor-insulator transition (SIT) in regular arrays of Josephson junctions is studied at low temperatures. We derived an imaginary time Ginzburg-Landau-type action properly describing the Coulomb interaction. The renormalization group analysis at zero temperature T=0 in the space dimensionality d=3 shows that the SIT is always of the first order.
View Article and Find Full Text PDFWe study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator.
View Article and Find Full Text PDFUnderstanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian.
View Article and Find Full Text PDFPhys Rev Lett
September 2009
We consider microscopically low-temperature transport in weakly disordered arrays of Josephson junctions in the Coulomb blockade regime. We demonstrate that at sufficiently low temperatures the main contribution to the dc conductivity comes from the motion of single-Cooper-pair excitations, scattered by irregularities in the array. Being proportional to the concentration of the excitations, the conductivity is exponentially small in temperature with the activation energy close to the charging energy of a Cooper pair on a superconductive island.
View Article and Find Full Text PDF