Transdermal drug delivery systems (TDDSs) were developed for prolonged tamsulosin (TMS) delivery. Double layer (DL) TDDSs were prepared using Eudragit® RL by conventional film-forming. Ethylene-vinyl acetate was used as the backing layer, triethylcitrate as plasticizer, and Capmul® PG-8-70 NF and Captex 170 EP as penetration enhancers (PEs).
View Article and Find Full Text PDFThe focus of this research was to develop and validate a suitable HPLC method, which allows simultaneous determination of three proposed skin model penetrants to investigate the percutaneous diffusion behavior of their combination: caffeine, methyl paraben and butyl paraben. These penetrants were selected because they represent a wide range of lipophilicities. This model highlights the effect of combining penetrants of different molecular properties on their diffusion behavior through skin.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2017
It has been proposed that Emu oil possesses skin permeation-enhancing effect. This study aimed to address its possible penetration enhancement mechanism(s) using IR microscopy, in accordance with LPP theory. The penetration of Emu oil through the layers of human skin was accomplished by monitoring oil-IR characteristic feature at 3006cm.
View Article and Find Full Text PDFThe combined properties of SepineoP 600 (S600), a self-gelling dispersion and SepineoSE 68 (M68), a natural liquid crystal forming surfactant, were utilized in the development of emulgel base for topical application. The emulgels were prepared in water alone or combined with propylene glycol (PG), polyethylene glycol 400 (PEG400) and glycerol (G) as cosolvents. Emulgels were characterized for their optical and flow behavior.
View Article and Find Full Text PDFThe aim of this work was to prepare and evaluate Tadalafil nanosuspensions and their PEG 4000 solid dispersion matrices to enhance its dissolution rate. Nanosuspensions were prepared by precipitation/ultrasonication technique at 5°C where different stabilizers were screened for stabilization. Nanosuspensions were characterized in terms of particle size and charge.
View Article and Find Full Text PDFThe objective of this study was to compare a novel sustained release tablet formulation that has the potential to be used for drugs of different physicochemical properties using a binary mixture of polymethacrylate polymers in their salt forms with the polymethacrylate interpolyelectrolyte complex (IPEC) tablets in terms of drug release and compactness. Also, we aimed to compare this formulation with an IPEC tablet in terms of drug release. Tablets prepared using Eudragit E-Citrate and Eudragit L-Sodium were more convenient, easier to prepare, and showed better sustained release and compactness characteristics compared to IPEC tablets of similar concentrations and preparation methods.
View Article and Find Full Text PDFBackground: Clarithromycin extended-release tablets are indicated for the treatment of adults with acute maxillary sinusitis caused by Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae; acute bacterial exacerbation of chronic bronchitis due to H influenzae, Haemophilus parainfluenzae, M catarrhalis, or S pneumoniae; or community acquired pneumonia due to H influenzae, H parainfluenzae, M catarrhalis, S pneumoniae, Chlamydia pneumoniae, or Mycoplasma pneumoniae.
Objective: This study was conducted to assess the bioequivalence of test and reference formulations of clarithromycin extended-release 500-mg tablets under fasting and fed conditions.
Methods: This was a single-dose, randomized, open-label, 2-period, 2-way crossover study with a 1-week washout period between doses.
The objectives of this study were to prepare and evaluate a novel sustained release tablet formulation using a binary mixture of polymethacrylate polymers: Eudragit E-100 (EE) and Eudragit L-100 (EL) in their salt forms. Tablets prepared using EE-citrate and EL-Na showed the highest degree of swelling among other combinations of EE and EL. The drug release rates were independent of the pH of the dissolution medium as the release profiles exhibited a continuous release pattern with no burst effect when changing the pH of the medium.
View Article and Find Full Text PDF