Publications by authors named "AL Burin"

Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical phonon band being narrower than the acoustic bands, decoherence takes place in two stages.

View Article and Find Full Text PDF

In an effort to increase the speed and efficiency of ballistic energy transport via oligomeric chains, we performed measurements of the transport in compounds featuring long alkyl chains of up to 37 methylene units. Compounds of the N-(CH)-COOMe type (denoted as azME) were synthesized with = 5, 10, 15, 19, 28, 37 and studied using relaxation-assisted two-dimensional infrared spectroscopy. The speed of the ballistic transport, initiated by the N tag excitation, increased ca.

View Article and Find Full Text PDF

A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length.

View Article and Find Full Text PDF

Optical phonons serve as the fast and efficient carriers of energy across periodic polymers due to their delocalization, large group velocity because of covalent bonding, and large energy quantum compared to that for acoustic phonons as it was observed in a number of recent measurements in different oligomers. However, this transport is dramatically sensitive to anharmonic interactions, including the unavoidable interaction with acoustic phonons responsible for transport decoherence, suppressing ballistic transport at long distances. Here, we show that this decoherence is substantially suppressed if the group velocity of optical phonons is less than the sound velocity of acoustic phonons; otherwise, ballistic transport is substantially suppressed by a Cherenkov-like emission of acoustic phonons.

View Article and Find Full Text PDF

Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is usually well-explained by a phenomenological standard tunneling model of independent TLSs, the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept electric field.

View Article and Find Full Text PDF

Base-pair-driven toehold-mediated strand displacement (BP-TMSD) is a fundamental concept employed for constructing DNA machines and networks with a gamut of applications─from theranostics to computational devices. To broaden the toolbox of dynamic DNA chemistry, herein, we introduce a synthetic surrogate termed host-guest-driven toehold-mediated strand displacement (HG-TMSD) that utilizes bioorthogonal, cucurbit[7]uril (CB[7]) interactions with guest-linked input sequences. Since control of the strand-displacement process is salient, we demonstrate how HG-TMSD can be finely modulated via changes to the structure of the input sequence (including synthetic guest head-group and/or linker length).

View Article and Find Full Text PDF

Rigid, conjugated alkyne bridges serve as important components in various transition-metal complexes used for energy conversion, charge separation, sensing, and molecular electronics. Alkyne stretching modes have potential for modulating charge separation in donor-bridge-acceptor compounds. Understanding the rules of energy relaxation and energy transfer across the metal center in such compounds can help optimize their electron transfer switching properties.

View Article and Find Full Text PDF
Article Synopsis
  • The ballistic regime of vibrational energy transport in molecular chains is characterized by high transport speed and efficiency, initiated by exciting a chain’s end group with mid-infrared photons.
  • Two types of chemically identical azido groups (normal and isotopically substituted nitrogen) were tested in alkyl chain compounds, revealing that isotope editing surprisingly decreased the transport speed.
  • Three different mechanisms for initiating the vibrational wavepacket were identified, involving direct formation from IR excitation, vibrational relaxation into localized end-group states, and relaxation into chain states, each contributing to the overall transport dynamics.
View Article and Find Full Text PDF

The low temperature transport of electron, or vibrational or electronic exciton toward polymer chains, turns out to be dramatically sensitive to its interaction with transverse acoustic vibrations. We show that this interaction leads to a substantial polaron effect and decoherence, which are generally stronger than those associated with longitudinal vibrations. For site-dependent interactions, transverse phonons form subohmic bath leading to the quantum phase transition accompanied by full suppression of the transport at zero temperature and fast decoherence characterized by temperature dependent rate k ∝ T at low temperature, while k ∝ T for site-independent interactions.

View Article and Find Full Text PDF

We used relaxation-assisted two-dimensional infrared spectroscopy to study the temperature dependence (10-295 K) of end-to-end energy transport across end-decorated PEG oligomers of various chain lengths. The excess energy was introduced by exciting the azido end-group stretching mode at 2100 cm (tag); the transport was recorded by observing the asymmetric C═O stretching mode of the succinimide ester end group at 1740 cm. The overall transport involves diffusive steps at the end groups and a ballistic step through the PEG chain.

View Article and Find Full Text PDF

Energy transport in molecules is essential for many areas of science and technology. Strong covalent bonds of a molecular backbone can facilitate the involvement of the molecule's high-frequency modes in energy transport, which, under certain conditions, makes the transport fast and efficient. We discuss such conditions and describe various transport regimes in molecules, including ballistic, diffusive, directed diffusion, and intermediate regime cases, in light of recently developed experimental and theoretical approaches.

View Article and Find Full Text PDF

We investigate the emergence of chaotic dynamics in a quantum Fermi-Pasta-Ulam problem for anharmonic vibrations in atomic chains applying semi-quantitative analysis of resonant interactions complemented by exact diagonalization numerical studies. The crossover energy separating chaotic high energy phase and localized (integrable) low energy phase is estimated. It decreases inversely proportionally to the number of atoms until approaching the quantum regime where this dependence saturates.

View Article and Find Full Text PDF

We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness.

View Article and Find Full Text PDF

Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system.

View Article and Find Full Text PDF

We demonstrate a laser using material defects known for deleterious microwave absorption in quantum computing. These defects are two-level atomic tunneling systems (TSs), which are manipulated using a uniform swept dc electric field and two ac pump fields. The swept field changes the TS energies.

View Article and Find Full Text PDF

The development of nanocomposite materials with desired heat management properties, including nanowires, layered semiconductor structures, and self-assembled monolayer (SAM) junctions, attracts broad interest. Such materials often involve polymeric/oligomeric components and can feature high or low thermal conductivity, depending on their design. For example, in SAM junctions made of alkane chains sandwiched between metal layers, the thermal conductivity can be very low, whereas the fibers of ordered polyethylene chains feature high thermal conductivity, exceeding that of many pure metals.

View Article and Find Full Text PDF

In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.

View Article and Find Full Text PDF

Intramolecular transport of vibrational energy in two series of oligomers featuring alkane chains of various length was studied by relaxation-assisted two-dimensional infrared spectroscopy. The transport was initiated by exciting various end-group modes (tags) such as different modes of the azido (ν(N≡N) and ν(N═N)), carboxylic acid (ν(C═O)), and succinimide ester (νas(C═O)) with short mid-IR laser pulses. It is shown that the transport via alkane chains is ballistic and the transport speed is dependent on the type of the tag mode that initiates the transport.

View Article and Find Full Text PDF

We investigate ballistic vibrational energy transport through optical phonon band in oligomeric chains in the presence of decoherence. An exact solution is obtained for the excitation density in the space-time representation in the continuous limit and this solution is used to characterize the energy transport time and intensity. Three transport mechanisms are identified such as ballistic, diffusive, and directed diffusive regimes, occurring at different distances and time scales.

View Article and Find Full Text PDF

Temperature dependence of intramolecular energy transport in perfluoroalkane oligomers with a chain length of 3-11 carbon atoms terminated by a carboxylic acid moiety on one end and a -CF2H group on another end was studied in solution experimentally and theoretically. Experiments were performed using a dual-frequency relaxation-assisted two-dimensional infrared spectroscopy method. The energy transport was initiated by exciting the C═O stretching mode of the acid and recorded by measuring a cross-peak amplitude between the C═O stretching and the C-H bending modes as a function of the waiting time between the excitation and probing.

View Article and Find Full Text PDF

We derive the ac dielectric loss in glasses due to resonant processes created by two-level systems and a swept electric field bias. It is shown that at sufficiently large ac fields and bias sweep rates, the nonequilibrium loss tangent created by the two fields approaches a universal maximum determined by the bare linear dielectric permittivity. In addition, this nonequilibrium loss tangent is derived for a range of bias sweep rates and ac amplitudes.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to understand how energy and vibrational relaxation occur in polyatomic molecules due to anharmonicity.
  • A generalized version of Marcus electron transfer theory was used to model the energy transport dynamics, along with improvements to existing theoretical frameworks.
  • The approach was successfully applied to several molecules, showing that the theoretical results aligned well with experimental findings from relaxation-assisted two-dimensional infrared spectroscopy.
View Article and Find Full Text PDF

Vibrational energy relaxation and transport in a molecule that is far from thermal equilibrium can affect its chemical reactivity. Understanding the energy transport dynamics in such molecules is also important for measuring molecular structural constraints via relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy. In this paper we investigated vibrational relaxation and energy transport in the ortho, meta, and para isomers of acetylbenzonitrile (AcPhCN) originated from excitation of the CN stretching mode.

View Article and Find Full Text PDF

We report the measurement of distance- and temperature-dependent rate constants for charge separation in capped hairpins in which a stilbene hole acceptor and hole donor are separated by A(3)G(n) diblock polypurine sequences consisting of 3 adenines and 1-19 guanines. The longer diblock systems obey the simplest model for an unbiased random walk, providing a direct measurement of k(hop) = 4.3 × 10(9) s(-1) for a single reversible G-to-G hole hopping step, somewhat faster than the value of 1.

View Article and Find Full Text PDF

A kinetics model is designed to investigate the charge separation (CT) process in stilbene-capped DNA hairpins composed of AT base pairs. This model combines standard tunneling and hopping electron transport with exciplex formation upon photoexcitation of the acceptor stilbene and its neighboring adenine and is capable of interpreting the CT rate and yield data within experimental accuracy. An analysis of hopping transport within the framework of a 1-D diffusion model results in a calculation of the nearest-neighbor CT rate to be approximately 1.

View Article and Find Full Text PDF