Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.
View Article and Find Full Text PDFCoulomb drag between adjacent electron and hole gases has attracted considerable attention, being studied in various two-dimensional systems, including semiconductor and graphene heterostructures. Here we report measurements of electron-hole drag in the Planckian plasma that develops in monolayer graphene in the vicinity of its Dirac point above liquid-nitrogen temperatures. The frequent electron-hole scattering forces minority carriers to move against the applied electric field due to the drag induced by majority carriers.
View Article and Find Full Text PDFThe ongoing efforts to optimize rechargeable Li-ion batteries led to the interest in intercalation of nanoscale layered compounds, including bilayer graphene. Its lithium intercalation has been demonstrated recently but the mechanisms underpinning the storage capacity remain poorly understood. Here, using magnetotransport measurements, we report in-operando intercalation dynamics of bilayer graphene.
View Article and Find Full Text PDFExtensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states. This interest has been motivated by prospects of finding new physics, including topologically protected quasiparticles, but also extends into metrology and device applications. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors.
View Article and Find Full Text PDFElectronic spectra of solids subjected to a magnetic field are often discussed in terms of Landau levels and Hofstadter-butterfly-style Brown-Zak minibands manifested by magneto-oscillations in two-dimensional electron systems. Here, we present the semiclassical precursors of these quantum magneto-oscillations which appear in graphene superlattices at low magnetic field near the Lifshitz transitions and persist at elevated temperatures. These oscillations originate from Aharonov-Bohm interference of electron waves following open trajectories that belong to a kagome-shaped network of paths characteristic for Lifshitz transitions in the moire superlattice minibands of twistronic graphenes.
View Article and Find Full Text PDFIt has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect.
View Article and Find Full Text PDFBiological nanostructures change their shape and function in response to external stimuli, and significant efforts have been made to design artificial biomimicking devices operating on similar principles. In this work we demonstrate a programmable nanofluidic switch, driven by elastocapillarity, and based on nanochannels built from layered two-dimensional nanomaterials possessing atomically smooth surfaces and exceptional mechanical properties. We explore operational modes of the nanoswitch and develop a theoretical framework to explain the phenomenon.
View Article and Find Full Text PDFTwo-dimensional (2D) materials offer a prospect of membranes that combine negligible gas permeability with high proton conductivity and could outperform the existing proton exchange membranes used in various applications including fuel cells. Graphene oxide (GO), a well-known 2D material, facilitates rapid proton transport along its basal plane but proton conductivity across it remains unknown. It is also often presumed that individual GO monolayers contain a large density of nanoscale pinholes that lead to considerable gas leakage across the GO basal plane.
View Article and Find Full Text PDFIn nature and technologies, many chemical reactions occur at interfaces with dimensions approaching that of a single reacting species in nano- and angstrom-scale. Mechanisms governing reactions at this ultimately small spatial regime remain poorly explored because of challenges to controllably fabricate required devices and assess their performance in experiment. Here we report how efficiency of electrochemical reactions evolves for electrodes that range from just one atom in thickness to sizes comparable with and exceeding hydration diameters of reactant species.
View Article and Find Full Text PDFDefect-free graphene is impermeable to all atoms and ions under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium.
View Article and Find Full Text PDFVan der Waals assembly enables the design of electronic states in two-dimensional (2D) materials, often by superimposing a long-wavelength periodic potential on a crystal lattice using moiré superlattices. This twistronics approach has resulted in numerous previously undescribed physics, including strong correlations and superconductivity in twisted bilayer graphene, resonant excitons, charge ordering and Wigner crystallization in transition-metal chalcogenide moiré structures and Hofstadter's butterfly spectra and Brown-Zak quantum oscillations in graphene superlattices. Moreover, twistronics has been used to modify near-surface states at the interface between van der Waals crystals.
View Article and Find Full Text PDFThe most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering and hydrodynamic flow.
View Article and Find Full Text PDFGraphite is one of the most chemically inert materials. Its elementary constituent, monolayer graphene, is generally expected to inherit most of the parent material's properties including chemical inertness. Here, we show that, unlike graphite, defect-free monolayer graphene exhibits a strong activity with respect to splitting molecular hydrogen, which is comparable to that of metallic and other known catalysts for this reaction.
View Article and Find Full Text PDFFine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels.
View Article and Find Full Text PDFRecent experiments demonstrated that interfacial water dissociation (HO ⇆ H + OH) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields.
View Article and Find Full Text PDFStrong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10 V m, sufficient to accelerate the dissociation of weakly bound molecules (e.g.
View Article and Find Full Text PDFElectrical resistance usually originates from lattice imperfections. However, even a perfect lattice has a fundamental resistance limit, given by the Landauer conductance caused by a finite number of propagating electron modes. This resistance, shown by Sharvin to appear at the contacts of electronic devices, sets the ultimate conduction limit of non-interacting electrons.
View Article and Find Full Text PDFMaterials capable of extracting gold from complex sources, especially electronic waste (e-waste), are needed for gold resource sustainability and effective e-waste recycling. However, it remains challenging to achieve high extraction capacity and precise selectivity if only a trace amount of gold is present along with other metallic elements . Here we report an approach based on reduced graphene oxide (rGO) which provides an ultrahigh capacity and selective extraction of gold ions present in ppm concentrations (>1000 mg of gold per gram of rGO at 1 ppm).
View Article and Find Full Text PDFVan der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS monolayers interlayered with 1T TaS monolayers displaying charge density waves (CDW).
View Article and Find Full Text PDFNanoporous membranes based on two dimensional materials are predicted to provide highly selective gas transport in combination with extreme permeance. Here we investigate membranes made from multilayer graphdiyne, a graphene-like crystal with a larger unit cell. Despite being nearly a hundred of nanometers thick, the membranes allow fast, Knudsen-type permeation of light gases such as helium and hydrogen whereas heavy noble gases like xenon exhibit strongly suppressed flows.
View Article and Find Full Text PDFTwisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarization arranged into a twist-controlled network.
View Article and Find Full Text PDFIn thermodynamic equilibrium, current in metallic systems is carried by electronic states near the Fermi energy, whereas the filled bands underneath contribute little to conduction. Here, we describe a very different regime in which carrier distribution in graphene and its superlattices is shifted so far from equilibrium that the filled bands start playing an essential role, leading to a critical-current behavior. The criticalities develop upon the velocity of electron flow reaching the Fermi velocity.
View Article and Find Full Text PDFLiquid crystal devices using organic molecules are nowadays widely used to modulate transmitted light, but this technology still suffers from relatively weak response, high cost, toxicity and environmental concerns, and cannot fully meet the demand of future sustainable society. Here, an alternative approach to color-tunable optical devices, which is based on sustainable inorganic liquid crystals derived from 2D mineral materials abundant in nature, is described. The prototypical 2D mineral of vermiculite is massively produced by a green method, possessing size-to-thickness aspect ratios of >10 , in-plane magnetization of >10 emu g , and an optical bandgap of >3 eV.
View Article and Find Full Text PDF