Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation.
View Article and Find Full Text PDFThe development of capillary neutron optics permits a new technology for neutron capture therapy involving the application of a focused thermal neutron beam at the medically optimal location within the patient. A subthermal neutron beam begins to converge as it travels through a neutron "lens," reaching a narrow focus within a tube that allows it to pass directly to the treatment region. This technique results in a substantially lower dose to untreated parts of the patient and a substantially weaker radiation field in the treatment room generally.
View Article and Find Full Text PDFPhys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics
May 1994