Publications by authors named "AG Bagneres"

Article Synopsis
  • - The classification of termites, particularly the diverse Neoisoptera group, needs significant updates due to many incorrectly grouped taxa; researchers propose a new classification based on genomic analyses.
  • - The study identifies seven monophyletic family lineages within Neoisoptera and 18 subfamily lineages in the species-rich Termitidae, including several new subfamilies and the revival of some older ones.
  • - The new classification method is built on clear monophyletic lineages, which enhances its stability and adaptability for future studies, allowing it to incorporate yet-to-be-discovered species easily.
View Article and Find Full Text PDF

For thousands of years, humans have domesticated different plants by selecting for particular characters, often affecting less-known traits, including the volatile organic compounds (VOCs) emitted by these plants for defense or reproduction. The fig tree Ficus carica has a very wide range of varieties in the Mediterranean region and is selected for its traits affecting fruits, including pollination, but the effect of human-driven diversification on the VOCs emitted by the receptive figs to attract their pollinator (Blastophaga psenes) is not known. In the present study, VOCs from receptive figs of eight varieties in northern Morocco, were collected at different times within the manual pollination period and analyzed by gas chromatography-mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • Invasive species often carry limited genetic diversity from their native populations due to factors like founder events, which can affect their ability to adapt and thrive in new environments.
  • The study analyzes the genetic diversity of the invasive termite species Reticulitermes flavipes, comparing data from native and introduced populations across the globe to understand its invasion history.
  • Findings indicate a complex invasion process featuring numerous introduction events, with substantial gene flow likely facilitated by human activity, suggesting that increased genetic diversity in both native and introduced ranges may enhance invasion success.
View Article and Find Full Text PDF

The co-evolutionary pathways followed by hosts and parasites strongly depend on the adaptive potential of antagonists and its underlying genetic architecture. Geographically structured populations of interacting species often experience local differences in the strength of reciprocal selection pressures, which can result in a geographic mosaic of co-evolution. One example of such a system is the boreo-montane social wasp and its social parasite , which have evolved local defense and counter-defense mechanisms to match their antagonist.

View Article and Find Full Text PDF

Parental care is a major component of reproduction in social organisms, particularly during the foundation steps. Because investment into parental care is often costly, each parent is predicted to maximize its fitness by providing less care than its partner. However, this sexual conflict is expected to be low in species with lifelong monogamy, because the fitness of each parent is typically tied to the other's input.

View Article and Find Full Text PDF

Termites are social insects that can also be major pests. A well-known problem species is the subterranean termite, . It is invasive in France and is thought to have arrived from Louisiana during the 18th century.

View Article and Find Full Text PDF

Social insects recognize their nestmates by means of a cuticular hydrocarbon signature shared by colony members, but how nest signature changes across time has been rarely tested in longitudinal studies and in the field. In social wasps, the chemical signature is also deposited on the nest surface, where it is used by newly emerged wasps as a reference to learn their colony odor. Here, we investigate the temporal variations of the chemical signature that wasps have deposited on their nests.

View Article and Find Full Text PDF

Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years.

View Article and Find Full Text PDF

Invasive social insect populations that have been introduced to a new environment through a limited number of introduction events generally exhibit reduced variability in their chemical signatures (cuticular hydrocarbons) compared to native populations of the same species. The reduced variability in these major recognition cues could be caused by a reduction of genetic diversity due to a genetic bottleneck. This hypothesis was tested in an inbred European population of the invasive hornet Vespa velutina nigrithorax.

View Article and Find Full Text PDF

Studies investigating host-parasite systems rarely deal with multispecies interactions, and mostly explore impacts on hosts as individuals. Much less is known about the effects at colony level, when parasitism involves host organisms that form societies. We surveyed the effect of an ectoparasitic fungus, Rickia wasmannii, on kin-discrimination abilities of its host ant, Myrmica scabrinodis, identifying potential consequences at social level and subsequent changes in colony infiltration success of other organisms.

View Article and Find Full Text PDF

A long-standing goal of evolutionary biology is to understand how paleoclimatic and geological events shape the geographical distribution and genetic structure within and among species. Using a diverse set of markers (cuticular hydrocarbons, mitochondrial and nuclear gene sequences, microsatellite loci), we studied Reticulitermes grassei and R. banyulensis, two closely related termite species in southwestern Europe.

View Article and Find Full Text PDF

Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup.

View Article and Find Full Text PDF

In population genetics studies, detecting and quantifying the distribution of genetic variation can help elucidate ecological and evolutionary processes. In social insects, the distribution of population-level genetic variability is generally linked to colony-level genetic structure. It is thus especially crucial to conduct complementary analyses on such organisms to examine how spatial and social constraints interact to shape patterns of intraspecific diversity.

View Article and Find Full Text PDF

Varroa destructor (Vd) is a honeybee ectoparasite. Its original host is the Asian honeybee, Apis cerana, but it has also become a severe, global threat to the European honeybee, Apis mellifera. Previous studies have shown that Varroa can mimic a host's cuticular hydrocarbons (HC), enabling the parasite to escape the hygienic behaviour of the host honeybees.

View Article and Find Full Text PDF

Factors promoting the establishment and colonization success of introduced populations in new environments constitute an important issue in biological invasions. In this context, the respective role of pre-adaptation and evolutionary changes during the invasion process is a key question that requires particular attention. This study compared the colony breeding structure (i.

View Article and Find Full Text PDF

Nestmate recognition is a common phenomenon in social insects that typically is mediated by cuticular hydrocarbons. Geographical variation in cuticular hydrocarbons has been observed, although the pattern of variation is not consistent across species and is usually related to the biology and ecology of the different species. Polistes biglumis (Hymenoptera: Vespidae) is a social wasp that lives in high mountains where populations are separated by significant geographical barriers.

View Article and Find Full Text PDF

The social organization of termites, unlike that of other social insects, is characterized by a highly plastic caste system. With the exception of the alates, all other individuals in a colony remain at an immature stage of development. Workers in particular remain developmentally flexible; they can switch castes to become soldiers or neotenics.

View Article and Find Full Text PDF

Invasive species cause severe environmental and economic problems. The invasive success of social insects often appears to be related to their ability to adjust their social organization to new environments. To gain a better understanding of the biology of invasive termites, this study investigated the social organization of the subterranean termite, Reticulitermes urbis, analyzing the breeding structure and the number of reproductives within colonies from three introduced populations.

View Article and Find Full Text PDF

In social insects, colonies have exclusive memberships and residents promptly detect and reject non-nestmates. Blends of epicuticular hydrocarbons communicate colony affiliation, but the question remains how social insects use the complex information in the blends to discriminate between nestmates and non-nestmates. To test this we altered colony odor by simulating interspecific nest usurpation.

View Article and Find Full Text PDF

Social insects exhibit remarkable variation in their colony breeding structures, both within and among species. Ecological factors are believed to be important in shaping reproductive traits of social insect colonies, yet there is little information linking specific environmental variables with differences in breeding structure. Subterranean termites (Rhinotermitidae) show exceptional variation in colony breeding structure, differing in the number of reproductives and degree of inbreeding; colonies can be simple families headed by a single pair of monogamous reproductives (king and queen) or they can be extended families headed by multiple inbreeding neotenic reproductives (wingless individuals).

View Article and Find Full Text PDF

Biological invasions are recognized as a major threat to both natural and managed ecosystems. Phylogeographic and population genetic analyses can provide information about the geographical origins and patterns of introduction and explain the causes and mechanisms by which introduced species have become successful invaders. Reticulitermes flavipes is a North American subterranean termite that has been introduced into several areas, including France where introduced populations have become invasive.

View Article and Find Full Text PDF

Social insect colonies contain attractive resources for many organisms. Cleptoparasites sneak into their nests and steal food resources. Social parasites sneak into their social organisations and exploit them for reproduction.

View Article and Find Full Text PDF

Cooperative brood care is assumed to be the common driving factor leading to sociality. While this seems to be true for social Hymenoptera and many cooperatively breeding vertebrates, the importance of brood care for the evolution of eusociality in termites is unclear. A first step in elucidating this problem is an assessment of the ancestral condition in termites.

View Article and Find Full Text PDF

In termites, the capacity of workers to differentiate into neotenic reproductives is an important characteristic that deserves particular attention. To gain insight into the differentiation pathway, the potentialities of workers and the endocrinal changes during the formation of neotenics were compared in two sympatric termites, Reticulitermes flavipes and Reticulitermes grassei. After 1 year of development, 100% of R.

View Article and Find Full Text PDF

In social insects, cuticular hydrocarbons (CHCs) play a central role in nestmate recognition. CHCs have proved to be useful for identifying species and differentiating populations. In combination with CHCs, isoprenoid soldier defensive secretions (SDSs) have been previously used in some termite species for chemotaxonomic analyses.

View Article and Find Full Text PDF