Greater sound speed variability has been observed at the New England shelfbreak due to a greater influence from the Gulf Stream with increased meander amplitudes and frequency of Warm Core Ring (WCR) generation. Consequently, underwater sound propagation in the area also becomes more variable. This paper presents field observations of an acoustic near-surface ducting condition induced by shelf water streamers that are related to WCRs.
View Article and Find Full Text PDFThe goal of this study was to characterize the detection range of a near real-time baleen whale detection system, the digital acoustic monitoring instrument/low-frequency detection and classification system (DMON/LFDCS), equipped on a Slocum glider and a moored buoy. As a reference, a hydrophone array was deployed alongside the glider and buoy at a shallow-water site southwest of Martha's Vineyard (Massachusetts, USA) over a four-week period in spring 2017. A call-by-call comparison between North Atlantic right whale upcalls localized with the array (n = 541) and those detected by the glider or buoy was used to estimate the detection function for each DMON/LFDCS platform.
View Article and Find Full Text PDFImpact pile driving creates intense, impulsive sound that radiates into the surrounding environment. Piles driven vertically into the seabed generate an azimuthally symmetric underwater sound field whereas piles driven on an angle will generate an azimuthally dependent sound field. Measurements were made during pile driving of raked piles to secure jacket foundation structures to the seabed in waters off the northeastern coast of the U.
View Article and Find Full Text PDFThree-dimensional (3D) underwater sound field computations have been used for a few decades to understand sound propagation effects above sloped seabeds and in areas with strong 3D temperature and salinity variations. For an approximate simulation of effects in nature, the necessary 3D sound-speed field can be made from snapshots of temperature and salinity from an operational data-driven regional ocean model. However, these models invariably have resolution constraints and physics approximations that exclude features that can have strong effects on acoustics, example features being strong submesoscale fronts and nonhydrostatic nonlinear internal waves (NNIWs).
View Article and Find Full Text PDFA three-dimensional underwater sound propagation model with realistic ocean environmental conditions has been created for assessing the impacts of noise from offshore wind farm construction and operation. This model utilizes an existing accurate numerical solution scheme to solve the three-dimensional Helmholtz wave equation, and it is compared and validated with acoustic transmission data between 750 and 1250 Hz collected during the development of the Block Island Wind Farm (BIWF), Rhode Island. The variability of underwater sound propagation conditions has been investigated in the BIWF area on a temporal scale of months and a spatial scale of kilometers.
View Article and Find Full Text PDFDuring a 2 day period in mid-September 2006, more than 200, unconfirmed but identifiable, sei whale (Balaenoptera borealis) calls were collected as incidental data during a multidisciplinary oceanography and acoustics experiment on the shelf off New Jersey. Using a combined vertical and horizontal acoustic receiving array, sei whale movements were tracked over long distances (up to tens of kilometers) using a normal mode back propagation technique. This approach uses low-frequency, broadband passive sei whale call receptions from a single-station, two-dimensional hydrophone array to perform long distance localization and tracking by exploiting the dispersive nature of propagating normal modes in a shallow water environment.
View Article and Find Full Text PDFA variety of localization methods with normal mode theory have been established for localizing low frequency (below a few hundred Hz), broadband signals in a shallow water environment. Gauss-Markov inverse theory is employed in this paper to derive an adaptive normal mode back-propagation approach. Joining with the maximum a posteriori mode filter, this approach is capable of separating signals from noisy data so that the back-propagation will not have significant influence from the noise.
View Article and Find Full Text PDFSound at 85 to 450 Hz propagating in approximately 80-m depth water from fixed sources to a joint horizontal/vertical line array (HLA/VLA) is analyzed. The data are from a continental shelf area east of Delaware Bay (USA) populated with tidally generated long- and short-wavelength internal waves. Sound paths are 19 km in the along-shore (along internal-wave crest) direction and 30 km in the cross-shore direction.
View Article and Find Full Text PDFTo understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track.
View Article and Find Full Text PDFEnvironmental sensors moored on the New Jersey continental shelf tracked constant density surfaces (isopycnals) for 35 days in the summer of 2006. Sound-speed fluctuations from internal-wave vertical isopycnal displacements and from temperature/salinity variability along isopycnals (spiciness) are analyzed using frequency spectra and vertical covariance functions. Three varieties of internal waves are studied: Diffuse broadband internal waves (akin to waves fitting the deep water Garrett/Munk spectrum), internal tides, and, to a lesser extent, nonlinear internal waves.
View Article and Find Full Text PDFIn 2002 and 2003, tagged sperm whales (Physeter macrocephalus) were experimentally exposed to airgun pulses in the Gulf of Mexico, with the tags providing acoustic recordings at measured ranges and depths. Ray trace and parabolic equation (PE) models provided information about sound propagation paths and accurately predicted time of arrival differences between multipath arrivals. With adequate environmental information, a broadband acoustic PE model predicted the relative levels of multipath arrivals recorded on the tagged whales.
View Article and Find Full Text PDFThe 1995 Shallow Water Acoustics in a Random Medium (SWARM) experiment [Apel et al., IEEE J. Ocean.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2000
A space- and time-dependent internal wave model was developed for a shallow water area on the New Jersey continental shelf and combined with a propagation algorithm to perform numerical simulations of acoustic field variability. This data-constrained environmental model links the oceanographic field, dominated by internal waves, to the random sound speed distribution that drives acoustic field fluctuations in this region. Working with a suite of environmental measurements along a 42-km track, a parameter set was developed that characterized the influence of the internal wave field on sound speed perturbations in the water column.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2000
As part of the Shallow Water Acoustics in a Random Medium (SWARM) experiment, a 16 element WHOI vertical line array (WVLA) was moored in 70 m of water off the New Jersey coast. A 400-Hz acoustic tomography source was moored some 32-km shoreward of this array, such that an acoustic path was created that was anti-parallel to the primary propagation direction for shelf-generated internal wave solitons. The presence of these soliton internal waves in the acoustic waveguide causes significant coupling of energy between propagating acoustic modes, creating fluctuations in modal intensities and modal peak arrival times, as well as time spreading of the pulses.
View Article and Find Full Text PDFIn order to understand the fluctuations imposed upon low frequency (50 to 500 Hz) acoustic signals due to coastal internal waves, a large multilaboratory, multidisciplinary experiment was performed in the Mid-Atlantic Bight in the summer of 1995. This experiment featured the most complete set of environmental measurements (especially physical oceanography and geology) made to date in support of a coastal acoustics study. This support enabled the correlation of acoustic fluctuations to clearly observed ocean processes, especially those associated with the internal wave field.
View Article and Find Full Text PDF