Publications by authors named "AE Dangor"

We report on the depletion and power amplification of the driving laser pulse in a strongly driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from 187±11  TW to a maximum of 318±12  TW after 13 mm of propagation in a plasma density of 0.9×10^{18}  cm^{-3}.

View Article and Find Full Text PDF

Advances in X-ray imaging techniques have been driven by advances in novel X-ray sources. The latest fourth-generation X-ray sources can boast large photon fluxes at unprecedented brightness. However, the large size of these facilities means that these sources are not available for everyday applications.

View Article and Find Full Text PDF

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (10(21) W/cm(2)) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil.

View Article and Find Full Text PDF

We report the first experimental observation of a long-wavelength hosing modulation of a high-intensity laser pulse. Side-view images of the scattered optical radiation at the fundamental wavelength of the laser reveal a transverse oscillation of the laser pulse during its propagation through underdense plasma. The wavelength of the oscillation λ(hosing) depends on the background plasma density n(e) and scales as λ(hosing)∼n(e)(-3/2).

View Article and Find Full Text PDF

Experiments where a laser-generated proton beam is used to probe the megagauss strength self-generated magnetic fields from a nanosecond laser interaction with an aluminum target are presented. At intensities of 10(15)   W  cm(-2) and under conditions of significant fast electron production and strong heat fluxes, the electron mean-free-path is long compared with the temperature gradient scale length and hence nonlocal transport is important for the dynamics of the magnetic field in the plasma. The hot electron flux transports self-generated magnetic fields away from the focal region through the Nernst effect [A.

View Article and Find Full Text PDF

Experimental measurements of magnetic fields generated in the cavity of a self-injecting laser-wakefield accelerator are presented. Faraday rotation is used to determine the existence of multimegagauss fields, constrained to a transverse dimension comparable to the plasma wavelength ∼λp and several λp longitudinally. The fields are generated rapidly and move with the driving laser.

View Article and Find Full Text PDF

Ultrahigh-velocity shock waves (approximately 10,000 km/s or 0.03c) are generated by focusing a 350-TW laser pulse into low-density helium gas. The collisionless ultrahigh-Mach-number electrostatic shock propagates from the plasma into the surrounding gas, ionizing gas as it becomes collisional.

View Article and Find Full Text PDF

Experiments were performed to investigate the propagation of a high intensity (I approximately 10(21) W cm(-2)) laser in foam targets with densities ranging from 0.9n(c) to 30n(c). Proton acceleration was used to diagnose the interaction.

View Article and Find Full Text PDF

The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually.

View Article and Find Full Text PDF

Experiments were performed in which intense laser pulses (up to 9x10(19) W/cm(2)) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma.

View Article and Find Full Text PDF

The dynamics of plasma electrons in the focus of a petawatt laser beam are studied via measurements of their x-ray synchrotron radiation. With increasing laser intensity, a forward directed beam of x rays extending to 50 keV is observed. The measured x rays are well described in the synchrotron asymptotic limit of electrons oscillating in a plasma channel.

View Article and Find Full Text PDF

A short-pulse laser beat wave scheme for advanced particle accelerator applications is examined. A short, intense (3-ps, >10(18)-W cm(-2)) two-frequency laser pulse is produced by use of a modified chirped-pulse amplification scheme and is shown to produce relativistic plasma waves during interactions with low-density plasmas. The generation of plasma waves was observed by measurement of forward Raman scattering.

View Article and Find Full Text PDF

The effect of laser-focusing conditions on the evolution of relativistic plasma waves in laser-wakefield accelerators is studied both experimentally and with particle-in-cell simulations. For short focal-length (w_{0} View Article and Find Full Text PDF

We present measurements of a magnetic reconnection in a plasma created by two laser beams (1 ns pulse duration, 1 x 10(15) W cm(-2)) focused in close proximity on a planar solid target. Simultaneous optical probing and proton grid deflectometry reveal two high velocity, collimated outflowing jets and 0.7-1.

View Article and Find Full Text PDF

A beam of multi-MeV helium ions has been observed from the interaction of a short-pulse high-intensity laser pulse with underdense helium plasma. The ion beam was found to have a maximum energy for He2+ of (40(+3)(-8)) MeV and was directional along the laser propagation path, with the highest energy ions being collimated to a cone of less than 10 degrees. 2D particle-in-cell simulations show that the ions are accelerated by a sheath electric field that is produced at the back of the gas target.

View Article and Find Full Text PDF

The physics of the interaction of high-intensity laser pulses with underdense plasma depends not only on the interaction intensity but also on the laser pulse length. We show experimentally that as intensities are increased beyond 10(20) W cm(-2) the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and it is likely that direct laser acceleration mechanisms begin to play an important role. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high-power interactions at much lower intensity enable the generation of quasi-mono-energetic beams of relativistic electrons.

View Article and Find Full Text PDF

Filamented electron beams have been observed to be emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser when there is low-density plasma present at the back of the target. These observations are consistent with a laser-generated beam of relativistic electrons propagating through the target, which is subsequently fragmented by a Weibel-like instability in the low-density plasma at the rear. These measurements are in agreement with particle-in-cell simulations and theory, since the filamentation instability is predicted to be dramatically enhanced when the electron beam density approaches that of the background plasma.

View Article and Find Full Text PDF

Ion acceleration by the interaction of an ultraintense short-pulse laser with an underdense-plasma has been studied at intensities up to 3 x 10(20) W/cm(2). Helium ions having a maximum energy of 13.2+/-1.

View Article and Find Full Text PDF

High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma.

View Article and Find Full Text PDF

We report measurements of ultrahigh magnetic fields produced during intense ( approximately 10(20) Wcm(-2) micro m(2) ) laser interaction experiments with solids. We show that polarization measurements of high-order vuv laser harmonics generated during the interaction (up to the 15th order) suggest the existence of magnetic field strengths of 0.7+/-0.

View Article and Find Full Text PDF

The transverse emittance of a relativistic electron beam generated by the interaction of a high-intensity laser with an underdense plasma has been measured with the "pepper-pot" method. For parameters pertaining to the forced laser wakefield regime, we have measured an emittance as low as (2.7+/-0.

View Article and Find Full Text PDF

Experiments were performed in which ultrahigh intensity laser pulses (I>5 x 10(19) W cm(-2)) were used to irradiate thin wire targets. It was observed that such interactions generate a large number of relativistic electrons which escape the target and induce multimega ampere return currents within the wire. MHD instabilities can subsequently be observed in the pinching plasma along with field emission of electrons from nearby objects.

View Article and Find Full Text PDF

Measurements of energetic electron beams generated from ultrahigh intensity laser interactions (I>10(19) W/cm(2)) with dense plasmas are discussed. These interactions have been shown to produce very directional beams, although with a broad energy spectrum. In the regime where the beam density approaches the density of the background plasma, we show that these beams are unstable to filamentation and "hosing" instabilities.

View Article and Find Full Text PDF

Measurements of energetic proton production resulting from the interaction of high-intensity laser pulses with foil targets are described. Through the use of layered foil targets and heating of the target material we are able to distinguish three distinct populations of protons. One high energy population is associated with a proton source near the front surface of the target and is observed to be emitted with a characteristic ring structure.

View Article and Find Full Text PDF