Proc Natl Acad Sci U S A
December 2022
We report that high-quality single crystals of the hexagonal heavy fermion material uranium diauride (UAu) become superconducting at pressures above 3.2 GPa, the pressure at which an unusual antiferromagnetic state is suppressed. The antiferromagnetic state hosts a marginal fermi liquid and the pressure evolution of the resistivity within this state is found to be very different from that approaching a standard quantum phase transition.
View Article and Find Full Text PDFThe thermoelectric performance of ACuP (A = Mg and Ca) with abundant elements and low gravimetric density is reported. Both systems are p-type doped by intrinsic Cu vacancy defects, have large power factors and promising figures of merit, reaching = 0.5 at 800 K.
View Article and Find Full Text PDFThe term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood.
View Article and Find Full Text PDFThe theory of quantum order-by-disorder (QOBD) explains the formation of modulated magnetic states at the boundary between ferromagnetism and paramagnetism in zero field. PrPtAl has been argued to provide an archetype for this. Here, we report the phase diagram in magnetic field, applied along both the easy a axis and hard b axis.
View Article and Find Full Text PDFA new solid-state electrotransport (SSE) apparatus for refining ultra-pure single crystals of metallic compounds under ultra-high vacuum is described. The setup employs a novel thermal expansion compensation mechanism to minimize mechanical stress on the sample during refinement with cold clamps for contamination-less purification at elevated temperatures. The apparatus is designed to tune the composition of initially slightly off-stoichiometric samples.
View Article and Find Full Text PDFRev Sci Instrum
August 2016
Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.
View Article and Find Full Text PDFAlthough CCD X-ray detectors can be faster to use, their large-area versions can be much more expensive than similarly sized photographic plate detectors. When indexing X-ray diffraction patterns, large-area detectors can prove very advantageous as they provide more spots, which makes fitting an orientation easier. On the other hand, when looking for single crystals in a polycrystalline sample, the speed of CCD detectors is more useful.
View Article and Find Full Text PDFWe report neutron scattering measurements of critical magnetic excitations in the weakly ferromagnetic superconductor UCoGe. The strong non-Landau damping of the excitations we observe, although unusual, has been found in another related ferromagnet, UGe(2) at zero pressure. However, we also find that there is a significant anisotropy of the magnetic correlation length in UCoGe that contrasts with an almost isotropic length for UGe(2).
View Article and Find Full Text PDFInelastic neutron scattering measurements typically require two orders of magnitude longer data collection times and larger sample sizes than neutron diffraction studies. Inelastic neutron scattering measurements on pressurised samples are particularly challenging since standard high-pressure apparatus restricts sample volume, attenuates the incident and scattered beams, and contributes background scattering. Here, we present the design of a large volume two-layered piston-cylinder pressure cell with optimised transmission for inelastic neutron scattering experiments.
View Article and Find Full Text PDFWe have developed a miniature diamond anvil cell for magnetization measurements in a widely used magnetic property measurement system commercial magnetometer built around a superconducting quantum interference device. The design of the pressure cell is based on the turnbuckle principle in which force can be created and maintained by rotating the body of the device while restricting the counterthreaded end-nuts to translational movement. The load on the opposed diamond anvils and the sample between them is generated using a hydraulic press.
View Article and Find Full Text PDFNew TbFeAs(O,F) and DyFeAs(O,F) superconductors with critical temperatures T(c) = 46 and 45 K and very high critical fields, >or=100 T, have been prepared at 1100-1150 degrees C and 10-12 GPa, demonstrating that high pressure may be used to synthesise late rare earth derivatives of the recently reported RFeAs(O,F) (R = La-Nd, Sm, Gd) high temperature superconductors.
View Article and Find Full Text PDFIn several metals, including URhGe, superconductivity has recently been observed to appear and coexist with ferromagnetism at temperatures well below that at which the ferromagnetic state forms. However, the material characteristics leading to such a state of coexistence have not yet been fully elucidated. We report that in URhGe there is a magnetic transition where the direction of the spin axis changes when a magnetic field of 12 tesla is applied parallel to the crystal b axis.
View Article and Find Full Text PDFWe report that the flux-line lattice in the cubic superconductor Pr(Os4Sb12 is strongly distorted from an ideal hexagonal lattice at very low temperatures in a small applied field. We attribute this to the presence of gap nodes in the superconducting state on at least some Fermi-surface sheets.
View Article and Find Full Text PDFWe report that the uniform magnetization is not conserved in the magnetic excitation spectrum of UGe2. The measured spectrum is therefore different from that in d-electron ferromagnetic metals in a way that would facilitate magnetically mediated superconductivity.
View Article and Find Full Text PDFPhys Rev Lett
September 2002
We report measurements of the pressure dependence of the low-temperature magnetization that show that the two pressure induced magnetic transitions in UGe2 are of first order. Further, the pressure dependence of the uniform susceptibility relative to the superconducting transition is not as expected if the latter is driven by the proximity to a ferromagnetic quantum critical point. Our data instead suggest that the superconducting pairing could be associated with a sharp spike in the electronic density of states that is also responsible for the lower pressure magnetic transition.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1996