Publications by authors named "AC Villari"

For the generation of beams with the offline ion source at the Facility for Rare Isotope Beams (FRIB), suitable source samples are required. Arsenic-73 is a frequently requested user beam due to its significance in nuclear structure studies and astrophysics. In this work, we outline the process of preparing a As source sample, containing (5.

View Article and Find Full Text PDF

We report the first mass measurement of the proton-halo candidate ^{22}Al performed with the low energy beam ion trap facility's 9.4 T Penning trap mass spectrometer at facility for rare isotope beams. This measurement completes the mass information for the lightest remaining proton-dripline nucleus achievable with Penning traps.

View Article and Find Full Text PDF

At the ReAccelerator within the Facility for Rare Isotope Beams, a combination of an interchangeable aluminum foil and a silicon detector was developed to quantify isobaric contamination in rare isotope beams. The device is simple to operate and is now used routinely. In this article, we describe the system and show an application of the device to determine the level of contamination of an Si-32 rare isotope beam by stable S-32.

View Article and Find Full Text PDF

At the Facility for Rare Isotope Beams (FRIB), an oven-ion source combination was used to create rare isotope beams in support of the stand-alone user beam program of the ReAccelerator (ReA) facility. This ion source, called Batch-Mode Ion Source (BMIS), was loaded with enriched stable nuclides (Si, Cr, and Fe) and long-lived radionuclides (Al, Si). The introduced samples, herein designated as source samples, were thermally volatilized in the BMIS oven, and then ionization was used to generate the required beams.

View Article and Find Full Text PDF

We report the mass measurement of ^{56}Cu, using the LEBIT 9.4 T Penning trap mass spectrometer at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of ^{56}Cu is critical for constraining the reaction rates of the ^{55}Ni(p,γ) ^{56}Cu(p,γ) ^{57}Zn(β^{+}) ^{57}Cu bypass around the ^{56}Ni waiting point.

View Article and Find Full Text PDF

The difference in the mean-square nuclear charge radius of xenon isotopes was measured utilizing a method based on extreme ultraviolet spectroscopy of highly charged Na-like ions. The isotope shift of the Na-like 1 (3 - 3 ) transition between the Xe and Xe isotopes was experimentally determined using the electron-beam ion-trap facility at the National Institute of Standards and Technology. The mass-shift and the field-shift coefficients were calculated with enhanced precision by the relativistic many-body perturbation theory and multiconfiguration Dirac-Hartree-Fock method.

View Article and Find Full Text PDF

We report the determination of the Q(EC) value of the mirror transition of (11)C by measuring the atomic masses of (11)C and (11)B using Penning trap mass spectrometry. More than an order of magnitude improvement in precision is achieved as compared to the 2012 Atomic Mass Evaluation (Ame2012) [Chin. Phys.

View Article and Find Full Text PDF

We report the first direct measurement of the (14)O superallowed Fermi β-decay QEC value, the last of the so-called "traditional nine" superallowed Fermi β decays to be measured with Penning trap mass spectrometry. (14)O, along with the other low-Z superallowed β emitter, (10)C, is crucial for setting limits on the existence of possible scalar currents. The new ground state QEC value, 5144.

View Article and Find Full Text PDF

We report on direct time-of-flight based mass measurements of 16 light neutron-rich nuclei. These include the first determination of the masses of the Borromean drip-line nuclei (19)B, (22)C, and (29)F as well as that of (34)Na. In addition, the most precise determinations to date for (23)N and (31)Ne are reported.

View Article and Find Full Text PDF

The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.

View Article and Find Full Text PDF

The Van de Graaff accelerator at IRMM works since many years providing proton, deuteron, and helium beams for nuclear data measurements. The original ion source was of RF type with quartz bottle. This kind of source, as well known, needs regular maintenance for which the accelerator tank must be completely opened.

View Article and Find Full Text PDF

The possibility of observing neutrinoless double beta decay offers the opportunity of determining the effective neutrino mass if the nuclear matrix element were known. Theoretical calculations are uncertain, and measurements of the occupations of valence orbits by nucleons active in the decay can be important. The occupation of valence neutron orbits in the ground states of 76Ge (a candidate for such decay) and 76Se (the daughter nucleus) were determined by precisely measuring cross sections for both neutron-adding and removing transfer reactions.

View Article and Find Full Text PDF
Article Synopsis
  • A new system for producing multicharged alkali ions has been developed at GANIL/SPIRAL I using a method called "direct 1+/N+," which combines a surface ionization source with an electron-cyclotron-resonance ion source.
  • The system was tested with a primary beam of (48)Ca at 60.3 A MeV, and the direct 1+/N+ process showed experimental evidence with a potential difference of 11 V.
  • The charge breeding efficiency for (47)K(5+) was 0.04%, significantly lower than the standard 1+/N+ method's efficiency of 6% for stable potassium ions, with possible reasons discussed in the text.
View Article and Find Full Text PDF

The root-mean-square (rms) nuclear charge radius of 8He, the most neutron-rich of all particle-stable nuclei, has been determined for the first time to be 1.93(3) fm. In addition, the rms charge radius of 6He was measured to be 2.

View Article and Find Full Text PDF

The masses of the radioactive nuclei (46)V and its decay daughter (46)Ti have been measured with the Canadian Penning Trap on-line Penning trap mass spectrometer to a precision of 1 x 10(-8). A Q(EC) value of 7052.90(40) keV for the superallowed beta decay of (46)V is obtained from the difference of these two masses.

View Article and Find Full Text PDF

The ground state of the proton-rich, unbound nucleus 11N was observed, together with six excited states using the multinucleon transfer reaction 10B(14N,13B)11N at 30A MeV incident energy at Grand Accelerateur National d'Ions Lourds. Levels of 11N are observed as well defined resonances in the spectrum of the 13B ejectiles. They are localized at 1.

View Article and Find Full Text PDF