Publications by authors named "ABRAHAMS I"

The classical view of the structural changes that occur at the ferroelectric transition in perovskite-structured systems, such as BaTiO, is that polarization occurs due to the off-center displacement of the B-site cations. Here, we show that in the bismuth sodium titanate (BNT)-based composition 0.2(BaSrTiO)-0.

View Article and Find Full Text PDF

Higher adducts of a fullerene, such as the bis-adduct of PCBM (bis-PCBM), can be used to achieve shallower molecular orbital energy levels than, for example, PCBM or C Substituting the bis-adduct for the parent fullerene is useful to increase the open-circuit voltage of organic solar cells or achieve better energy alignment as electron transport layers in, for example, perovskite solar cells. However, bis-PCBM is usually synthesized as a mixture of structural isomers, which can lead to both energetic and morphological disorder, negatively affecting device performance. Here, we present a comprehensive study on the molecular properties of 19 pure bis-isomers of PCBM using a variety of characterization methods, including ultraviolet photoelectron spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, single crystal structure, and (time-dependent) density functional theory calculation.

View Article and Find Full Text PDF

If magnesium-ion batteries (MIBs) are to be seriously considered for next-generation energy storage, then a number of major obstacles need to be overcome. The lack of reversible cathode materials with sufficient capacity and cycle life is one of these challenges. Here, we report a new MIB cathode constructed of vertically stacked vanadium molybdenum sulfide (VMS) nanosheets toward addressing this challenge.

View Article and Find Full Text PDF

New solid electrolytes are crucial for the development of all-solid-state lithium batteries with advantages in safety and energy densities over current liquid electrolyte systems. While some of the best solid-state Li-ion conductors are based on sulfides, their air sensitivity makes them less commercially attractive, and attention is refocusing on air-stable oxide-based systems. Among these, the LISICON-structured systems, such as LiZnGeO and LiVGeO, have been relatively well studied.

View Article and Find Full Text PDF

Mesoporous glasses are a promising class of bioresorbable biomaterials characterized by high surface area and extended porosity in the range of 2 to 50 nm. These peculiar properties make them ideal materials for the controlled release of therapeutic ions and molecules. Whilst mesoporous silicate-based glasses (MSG) have been widely investigated, much less work has been done on mesoporous phosphate-based glasses (MPG).

View Article and Find Full Text PDF

Background: Colistin is increasingly prescribed for neonates with carbapenem-resistant (CRE) infections.

Objectives: We described patient demographics, infection episodes, treatment and clinical outcomes, colistin related adverse events and relatedness of isolates in neonates with clinically confirmed or clinically suspected CRE infections.

Method: The authors retrospectively reviewed culture-confirmed and clinically suspected culture-negative CRE infections at a South African neonatal unit during a CRE outbreak.

View Article and Find Full Text PDF

The BIMEVOXes are among the best oxide ion conductors at low and intermediate temperatures. Their high conductivity is associated with local defect structure. In this work, the local structures of two BIMEVOX compositions, BiVGeO and BiVSnO, are examined using total neutron and X-ray scattering methods, with both compositions exhibiting the ordered α-phase at 25 °C and the disordered γ-phase at 700 °C.

View Article and Find Full Text PDF

Antiferroelectric (AFE) materials have been intensively studied due to their potential uses in energy storage applications and energy conversion. These materials are characterized by double polarization-electric field (-) hysteresis loops and nonpolar crystal structures. Unusually, in the present work, SrLaTaTiO (STLT32), SrLaTaTiO (STLT36), and SrCaTaO (SCT15), lead-free perovskite layered structure (PLS) materials, are shown to exhibit AFE-like double - hysteresis loops despite maintaining a polar crystal structure.

View Article and Find Full Text PDF

Using a combination of multipole methods and the method of matched asymptotic expansions, we present a solution procedure for acoustic plane wave scattering by a single Helmholtz resonator in two dimensions. Closed-form representations for the multipole scattering coefficients of the resonator are derived, valid at low frequencies, with three fundamental configurations examined in detail: the thin-walled, moderately thick-walled and extremely thick-walled limits. Additionally, we examine the impact of dissipation for extremely thick-walled resonators, and also numerically evaluate the scattering, absorption and extinction cross-sections (efficiencies) for representative resonators in all three wall thickness regimes.

View Article and Find Full Text PDF

We present a solution method which combines the technique of matched asymptotic expansions with the method of multipole expansions to determine the band structure of cylindrical Helmholtz resonator arrays in two dimensions. The resonator geometry is considered in the limit as the wall thickness becomes very large compared with the aperture width (the limit). In this regime, the existing treatment in Part I (Smith & Abrahams, 2022 Tailored acoustic metamaterials.

View Article and Find Full Text PDF

We present a novel multipole formulation for computing the band structures of two-dimensional arrays of cylindrical Helmholtz resonators. This formulation is derived by combining existing multipole methods for arrays of ideal cylinders with the method of matched asymptotic expansions. We construct asymptotically close representations for the dispersion equations of the first band surface, correcting and extending an established lowest-order (isotropic) result in the literature for thin-walled resonator arrays.

View Article and Find Full Text PDF

A modified and sustainable approach is reported in this research for the synthesis of a spherical-shaped CuO-BiO electrode material for electrochemical studies. Aqueous extract derived from the plant L. (Amaranthaceae) (AVL) was used as a reducing agent for morphological control of the synthesis of CuO-BiO nanocomposites.

View Article and Find Full Text PDF

This paper reviews the modern state of the Wiener-Hopf factorization method and its generalizations. The main constructive results for matrix Wiener-Hopf problems are presented, approximate methods are outlined and the main areas of applications are mentioned. The aim of the paper is to offer an overview of the development of this method, and demonstrate the importance of bringing together pure and applied analysis to effectively employ the Wiener-Hopf technique.

View Article and Find Full Text PDF

Grain size can have significant effects on the properties of electroceramics for dielectric, piezoelectric, and ferroelectric applications. Here, we systematically investigate the effect of grain size on the structure and properties of Mn-modified 0.67BiFeO-0.

View Article and Find Full Text PDF

Background: Chlorhexidine gluconate (CHG) body washes and emollient application may modulate bacterial pathogen colonization and prevent neonatal hospital-acquired infections.

Methods: This pilot, non-randomized, open-label trial, enrolled preterm neonates (1000-1500g; day 1-3 of life) at a tertiary hospital in Cape Town, South Africa. Participants were sequentially allocated to 4 trial arms (n=20 each): 1% aqueous CHG (CHG), 1% CHG plus emollient (CHG+EM), emollient only (EM) and standard of care (SOC: no antiseptic/emollient).

View Article and Find Full Text PDF

The sequence of transitions between different phases of BiNbO has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the β-phase is proposed to be metastable, while the α- and γ-phases are stable below and above 1040 °C, respectively.

View Article and Find Full Text PDF

The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example.

View Article and Find Full Text PDF

Ferroelectric domain walls (DWs) are important nanoscale interfaces between two domains. It is widely accepted that ferroelectric domain walls work idly at terahertz (THz) frequencies, consequently discouraging efforts to engineer the domain walls to create new applications that utilize THz radiation. However, the present work clearly demonstrates the activity of domain walls at THz frequencies in a lead-free Aurivillius phase ferroelectric ceramic, CaRbCeBiNbO, examined using THz-time-domain spectroscopy (THz-TDS).

View Article and Find Full Text PDF

In the present study, a mesoporous phosphate-based glass (MPG) in the PO-CaO-NaO system was synthesized, for the first time, using a combination of sol-gel chemistry and supramolecular templating. A comparison between the structural properties, bioactivity, and biocompatibility of the MPG with a non-porous phosphate-based glass (PG) of analogous composition prepared via the same sol-gel synthesis method but in the absence of a templating surfactant is also presented. Results indicate that the MPG has enhanced bioactivity and biocompatibility compared to the PG, despite having a similar local structure and dissolution properties.

View Article and Find Full Text PDF

A solution to the problem of water-wave scattering by a semi-infinite submerged thin elastic plate, which is either porous or non-porous, is presented using the Wiener-Hopf technique. The derivation of the Wiener-Hopf equation is rather different from that which is used traditionally in water-waves problems, and it leads to the required equations directly. It is also shown how the solution can be computed straightforwardly using Cauchy-type integrals, which avoids the need to find the roots of the highly non-trivial dispersion equations.

View Article and Find Full Text PDF

We introduce and study a new canonical integral, denoted , depending on two complex parameters and . It arises from the problem of wave diffraction by a quarter-plane and is heuristically constructed to capture the complex field near the tip and edges. We establish some region of analyticity of this integral in , and derive its rich asymptotic behaviour as | | and | | tend to infinity.

View Article and Find Full Text PDF

The chemical diffusion coefficient in LiNiMnCoO was determined via the galvanostatic intermittent titration technique in the voltage range 3 to 4.2 V. Calculated diffusion coefficients in these layered oxide cathodes during charging and discharging reach a minimum at the open-circuit voltage of 3.

View Article and Find Full Text PDF

Semiconductor surface patterning at the nanometer scale is crucial for high-performance optical, electronic, and photovoltaic devices. To date, surface nanostructures on organic-inorganic single-crystal perovskites have been achieved mainly through destructive methods such as electron-beam lithography and focused ion beam milling. Here, we present a solution-based epitaxial growth method for creating nanopatterns on the surface of perovskite monocrystalline thin films.

View Article and Find Full Text PDF

The H NMR spectrum of phenyl C butyric acid methyl ester ([60]PCBM) was recorded at high resolution (600 MHz). All of the H resonances expected of the -symmetric molecule were observed. The spin-spin couplings in the H NMR spectrum were not as expected at first order.

View Article and Find Full Text PDF

Mesoporous phosphate-based glasses have great potential as biomedical materials being able to simultaneously induce tissue regeneration and controlled release of therapeutic molecules. In the present study, a series of mesoporous phosphate-based glasses in the PO-CaO-NaO system, doped with 1, 3, and 5 mol% of Sr, were prepared using the sol-gel method combined with supramolecular templating. A sample without strontium addition was prepared for comparison.

View Article and Find Full Text PDF