The effective mass at the Fermi level is measured in the strongly interacting two-dimensional (2D) electron system in ultra-clean SiGe/Si/SiGe quantum wells in the low-temperature limit in tilted magnetic fields. At low electron densities, the effective mass is found to be strongly enhanced and independent of the degree of spin polarization, which indicates that the mass enhancement is not related to the electrons' spins. The observed effect turns out to be universal for silicon-based 2D electron systems, regardless of random potential, and cannot be explained by existing theories.
View Article and Find Full Text PDFThe increase in the resistivity with decreasing temperature followed by a drop by more than one order of magnitude is observed on the metallic side near the zero-magnetic-field metal-insulator transition in a strongly interacting two-dimensional electron system in ultra-clean SiGe/Si/SiGe quantum wells. We find that the temperature [Formula: see text], at which the resistivity exhibits a maximum, is close to the renormalized Fermi temperature. However, rather than increasing along with the Fermi temperature, the value [Formula: see text] decreases appreciably for spinless electrons in spin-polarizing (parallel) magnetic fields.
View Article and Find Full Text PDFIgnited by the discovery of the metal-insulator transition, the behaviour of low-disorder two-dimensional (2D) electron systems is currently the focus of a great deal of attention. In the strongly interacting limit, electrons are expected to crystallize into a quantum Wigner crystal, but no definitive evidence for this effect has been obtained despite much experimental effort over the years. Here, studying the insulating state of a 2D electron system in silicon, we have found two-threshold voltage-current characteristics with a dramatic increase in noise between the two threshold voltages.
View Article and Find Full Text PDFUsing ultra-high quality SiGe/Si/SiGe quantum wells at millikelvin temperatures, we experimentally compare the energy-averaged effective mass, m, with that at the Fermi level, m , and verify that the behaviours of these measured values are qualitatively different. With decreasing electron density (or increasing interaction strength), the mass at the Fermi level monotonically increases in the entire range of electron densities, while the energy-averaged mass saturates at low densities. The qualitatively different behaviour reveals a precursor to the interaction-induced single-particle spectrum flattening at the Fermi level in this electron system.
View Article and Find Full Text PDFWe show that the merging of the spin- and valley-split Landau levels at the chemical potential is an intrinsic property of a strongly interacting two-dimensional electron system in silicon. Evidence for the level merging is given by available experimental data.
View Article and Find Full Text PDFWith decreasing density n(s) the thermopower S of a low-disorder two-dimensional electron system in silicon is found to exhibit a sharp increase by more than an order of magnitude tending to a divergence at a finite disorder-independent density n(t) consistent with the critical form (-T/S) is proportional to (n(s)-n(t))(x) with x=1.0±0.1 (T is the temperature).
View Article and Find Full Text PDFWe directly measure the chemical potential jump in the low-temperature limit when the filling factor traverses the nu=1/3 and nu=2/5 fractional gaps in two-dimensional (2D) electron system in GaAs/AlGaAs single heterojunctions. In high magnetic fields B, both gaps are linear functions of B with slopes proportional to the inverse fraction denominator, 1/q. The fractional gaps close partially when the Fermi level lies outside.
View Article and Find Full Text PDFWe measure the chemical potential jump across the fractional gap in the low-temperature limit in the two-dimensional electron system of GaAs/AlGaAs single heterojunctions. In the fully spin-polarized regime, the gap for filling factor nu=1/3 increases linearly with the magnetic field and is coincident with that for nu=2/3, reflecting the electron-hole symmetry in the spin-split Landau level. In low magnetic fields, at the ground-state spin transition for nu=2/3, a correlated behavior of the nu=1/3 and nu=2/3 gaps is observed.
View Article and Find Full Text PDFWe measure the thermodynamic magnetization of a low-disordered, strongly correlated two-dimensional electron system in silicon in perpendicular magnetic fields. A new, parameter-free method is used to directly determine the spectrum characteristics (Landé g factor and the cyclotron mass) when the Fermi level lies outside the spectral gaps and the interlevel interactions between quasiparticles are avoided. Intralevel interactions are found to strongly modify the magnetization, without affecting the determined g* and m*.
View Article and Find Full Text PDFThermodynamic measurements reveal that the Pauli spin susceptibility of strongly correlated two-dimensional electrons in silicon grows critically at low electron densities--behavior that is characteristic of the existence of a phase transition.
View Article and Find Full Text PDFUsing magnetocapacitance data in tilted magnetic fields, we directly determine the chemical potential jump in a strongly correlated two-dimensional electron system in silicon when the filling factor traverses the spin and the cyclotron gaps. The data yield an effective g factor that is close to its value in bulk silicon and does not depend on the filling factor. The cyclotron splitting corresponds to the effective mass that is strongly enhanced at low electron densities.
View Article and Find Full Text PDFWe accurately measure the effective mass in a dilute two-dimensional electron system in silicon by analyzing the temperature dependence of the Shubnikov-de Haas oscillations in the low-temperature limit. A sharp increase of the effective mass with decreasing electron density is observed. We find that the enhanced effective mass is independent of the degree of spin polarization, which points to a spin-independent origin of the mass enhancement and is in contradiction with existing theories.
View Article and Find Full Text PDFThe critical electron density for the metal-insulator transition in a two-dimensional electron gas can be determined by two distinct methods: (i) a sign change of the temperature derivative of the resistance, and (ii) vanishing activation energy and vanishing nonlinearity of current-voltage characteristics as extrapolated from the insulating side. We find that, in zero magnetic field (but not in the presence of a parallel magnetic field), both methods give equivalent results, adding support to the existence of a true zero-field metal-insulator transition.
View Article and Find Full Text PDFThe magnetic field B(c), in which the electrons become fully spin polarized, is found to be proportional to the deviation of the electron density from the zero-field metal-insulator transition in a two-dimensional electron system in silicon. The tendency of B(c) to vanish at a finite electron density suggests a ferromagnetic instability in this strongly correlated electron system.
View Article and Find Full Text PDFWe observe and analyze strongly nonlinear photoluminescence kinetics of indirect excitons in GaAs/AlGaAs coupled quantum wells at low bath temperatures, > or = 50 mK. The long recombination lifetime of indirect excitons promotes accumulation of these Bose particles in the lowest energy states and allows the photoexcited excitons to cool down to temperatures where the dilute 2D gas of indirect excitons becomes statistically degenerate. Our main result--a strong enhancement of the exciton scattering rate to the low-energy states with increasing concentration of the indirect excitons--reveals bosonic stimulation of exciton scattering, which is a signature of a degenerate Bose-gas of excitons.
View Article and Find Full Text PDFWe measure the Hall conductivity, sigma(xy), on a Corbino geometry sample of a high-mobility AlGaAs/GaAs heterostructure in a pulsed magnetic field. At a bath temperature about 80 mK, we observe well expressed plateaux in sigma(xy) at integer filling factors. In the pulsed magnetic field, the Laughlin condition of the phase coherence of the electron wave functions is strongly violated and, hence, is not crucial for sigma(xy) quantization.
View Article and Find Full Text PDFWe investigate the double-layer electron system in a parabolic quantum well at filling factor nu=2 in a tilted magnetic field using capacitance spectroscopy. The competition between two ground states is found at the Zeeman splitting appreciably smaller than the symmetric-antisymmetric splitting. Although at the transition point the system breaks up into domains of the two competing states, the activation energy turns out to be finite, signaling the occurrence of a new insulator-insulator quantum phase transition.
View Article and Find Full Text PDF